Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T19:05:20.010Z Has data issue: false hasContentIssue false

Characterization of All Carbon Composites Reinforced with In situ Synthesized Carbon Nanostructures

Published online by Cambridge University Press:  30 July 2014

F. C. Robles Hernandez
Affiliation:
Mechanical Engineering Technology Department, University of Houston Texas 77204-4020 USA.
H. A. Calderon
Affiliation:
Depto. de Física, ESFM-IPN, Ed. 9 UPALM, Mexico D.F., Mexico.
D. Barber
Affiliation:
Mechanical Engineering Technology Department, University of Houston Texas 77204-4020 USA.
A. Okonkwo
Affiliation:
Mechanical Engineering Technology Department, University of Houston Texas 77204-4020 USA.
R. Ordoñez Olivares
Affiliation:
University of Pittsburg, Mechanical and Materials Science and Engineering Department, 648 Benedum Hall, 3700 O'Hara Street, Pittsburgh, PA 15261.
V. Hadjiev*
Affiliation:
Texas Center for Superconductivity, University of Houston, Houston, TX 77204, USA
*
To whom correspondence should be addressed: fcrobles@uh.edu
Get access

Abstract

In this work results are presented regarding carbon composites produced by high energy mechanical milling and consolidated by spark plasma sintering. The involved energy input in such a processing method has been used to develop composite materials and to synthesize effective in-situ reinforcement. In the as milled and sintered composites various dispersions of graphene, graphitic carbon, and diamonds in an amorphous matrix are found. The graphene, graphitic carbon and diamond phases are synthesized primarily during milling. The TEAM-05 microscope has been used for characterization that is complemented with Raman results. The spark plasma sintering method enhances the presence of graphene, graphitic carbon and diamonds.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Authors with equal contribution

References

REFERENCES

Sheehan, J. E., Buesking, K. W. & Sullivan, B. J. Carbon-Carbon Composites. Annu Rev Mater Sci 24, 1944 (1994).CrossRefGoogle Scholar
von Sturm, F. Graphite fibers and filaments. Springer series in materials science, Vol. 5. By M. S. Dresselhaus, G. Dresselhaus, K. Sugihara, I. L. Spain and H. A. Goldberg. Springer, Berlin/Heidelberg 1988. x, 382 pp., hard cover, DM 122.00.—ISBN 3-540-18938-6. Adv Mater 1, 130-131, (1989).CrossRefGoogle Scholar
Ordóñez Olivares, R., Garcia, C. I., DeArdo, A., Kalay, S. & Robles Hernández, F. C. Wear 271, 364373 (2011).CrossRefGoogle Scholar
Kroto, H. W. Clusters and Cluster-Assembled Materials 206, 611617 (1991).Google Scholar
Iijima, S. Nature 354, 5658 (1991).CrossRefGoogle Scholar
Geim, A. K. & Novoselov, K. S. Nat Mater 6, 183191 (2007).CrossRefGoogle Scholar
Garibay-Febles, V, Calderon, HA, Robles-Hernández, FC, Umemoto, M, Masuyama, K, Cabañas-Moreno, JC. Mater Manuf Process 15, 547567 (2000).CrossRefGoogle Scholar
Stankovich, S. et al. . Nature 442, 282286 (2006).CrossRefGoogle Scholar
Xie, S. H., Liu, Y. Y. & Li, J. Y. Appl Phys Lett 92, (2008).Google Scholar
Barrera, E. V. et al. . J Mater Res 9, 26622669 (1994).CrossRefGoogle Scholar
Dalton, A. B. et al. . Nature 423, 703–703 (2003).CrossRefGoogle Scholar
Robles-Hernández, F. C. Production and Characterization of (Al, Fe)-C (Graphite or Fullerene) Composites Prepared by Mechanical Alloying MSc thesis, Instituto Politécnico Nacionál , (1999).Google Scholar
Robles-Hernandez, F. C. & Calderon, H. A. Jom-Us 62, 6368 (2010).CrossRefGoogle Scholar
Zhan, G. D., Kuntz, J., Wan, J., Garay, J. & Mukherjee, A. K. J Am Ceram Soc 86, 200202 (2003).CrossRefGoogle Scholar
Walker, L. S., Marotto, V. R., Rafiee, M. A., Koratkar, N. & Corral, E. L. Acs Nano 5, 31823190, (2011).CrossRefGoogle Scholar
Fals, A. E., Hadjiev, V. G. & Robles Hernández, F. C. Materials Science and Engineering : A 558, 1320 (2012).CrossRefGoogle Scholar
Anselmi-Tamburini, U., Garay, J. E. & Munir, Z. A. Mat Sci Eng a-Struct 407, 2430, (2005).CrossRefGoogle Scholar
Ugarte, D. Nature 359, 707709 (1992).CrossRefGoogle Scholar
Chuvilin, A., Kaiser, U., Bichoutskaia, E., Besley, N. A. & Khlobystov, A. N. Nat Chem 2, 450453 (2010).CrossRefGoogle Scholar
Jinschek, J. R., Yucelen, E., Calderon, H. A. & Freitag, B. Carbon 49, 556–56 (2011).CrossRefGoogle Scholar
Kratschmer, W., Lamb, L. D., Fostiropoulos, K. & Huffman, D. R. Nature 347, 354358 (1990).CrossRefGoogle Scholar
Ferrari, A. C. & Robertson, J. Philos T R Soc A 362, 24772512, (2004).CrossRefGoogle Scholar