Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-12T01:56:40.650Z Has data issue: false hasContentIssue false

Change in Activation Volume for Plastic Deformation of Zr-based Bulk Metallic Glass following Annealing

Published online by Cambridge University Press:  01 February 2011

Jonathan B. Puthoff
Affiliation:
jputhoff@wisc.edu, University of Wisconsin - Madison, Materials Science Program, Department of Materials Science & Engineering, 1509 University Avenue, Madison, WI, 53706, United States, 6082621225
Donald S. Stone
Affiliation:
dsstone@wisc.edu, University of Wisconsin - Madison, Department of Materials Science & Engineering, 1509 University Avenue, Madison, WI, 53706, United States
Hongbo Cao
Affiliation:
hongboc@cae.wisc.edu, University of Wisconsin - Madison, Materials Science Program, 1509 University Avenue, Madison, WI, 53706, United States
Paul M. Voyles
Affiliation:
voyles@engr.wisc.edu, University of Wisconsin - Madison, Department of Materials Science & Engineering, 1509 University Avenue, Madison, WI, 53706, United States
Get access

Abstract

We performed nanoindentation creep experiments on the bulk metallic glass Zr54Cu38Al8 in an effort to measure the scale of the individual deformation events responsible for plastic deformation. From a nanoindentation creep experiment, we can determine V*, the activation volume, which we interpret as the volume of a shear transformation zone (STZ) multiplied by the shear strain undergone by the STZ during thermal activation. For the as-cast alloy hardness, H, is 5.33 ± 0.06 GPa, and V* is 87 ± 5 Å3. The alloy was then annealed near Tg for 24 hr and retested. No crystallization occurred during annealing as verified by XRD and TEM. Following annealing H increased to 7.36 ± 0.08 GPa and V* increased to 160 ± 10 Å3. We interpret the change in V* as arising from an increase in the number of atoms involved in the STZ.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Drehman, A. J., Greer, A. L., and Turnbull, D., Appl. Phys. Lett. 41, 716717 (1982)Google Scholar
2. Inoue, A., Zhang, T., and Masumoto, T., Mater. Trans. JIM 31, 425428 (1990)Google Scholar
3. Peker, A. and Johnson, W. L., Appl. Phys. Lett. 63, 23422344 (1993)Google Scholar
4. Löffler, J. L., Intermetallics 11, 529540 (2003)Google Scholar
5. Nieh, T. G., Wang, J. G., Wadsworth, J., Mukai, T., and Liu, C. T., MRS Proceedings 554, 379384 (1998)Google Scholar
6. Inoue, A., Nishiyama, N., and Kimura, H., Mater. Trans. JIM 38, 179183 (1997)Google Scholar
7. Cohen, M. H. and Turnbull, D., J. Chem. Phys. 31, 11641169 (1959)Google Scholar
8. Spaepen, F., Acta Metall. 25, 407415 (1976)Google Scholar
9. Argon, A. S., Acta Metall. 27, 4758 (1979)Google Scholar
10. Falk, M. L. and Langer, J. S., Phys. Rev. E 57, 71927205 (1998)Google Scholar
11. Johnson, W. L. and Samwer, K., Phys. Rev. Lett. 95, 195501 (2005)Google Scholar
12. Cargill, G. S. III, J. Appl. Phys. 41, 22482250 (1970)Google Scholar
13. Gaskell, P. H., Nature 276, 484485 (1978)Google Scholar
14. Miracle, D. B., Acta Mater. 54, 43174336 (2006)Google Scholar
15. Fan, C., Liaw, P. K., Wilson, T. W., Dmowski, W., Choo, H., and Liu, C. T., Appl. Phys Lett. 89, 111905 (2006)Google Scholar
16. Voyles, P. M., Gibson, J. M., and Tracey, M. M. J., J. Elec. Microscopy 49, 259266 (2000)Google Scholar
17. Hwang, J., Cao, H., and Voyles, P. M., this conferenceGoogle Scholar
18. Stone, D. S. and Yoder, K. B., J. Mater. Res. 9, 25242533 (1994)Google Scholar
19. Doerner, M. F. and Nix, W. D., J. Mater. Res. 1, 601609 (1986)Google Scholar
20. Jakes, J. E., Freihart, C. R., Beecher, J. F., Moon, R. J., and Stone, D. S., J. Mater. Res. (submitted, 2007)Google Scholar
21. Das, J., Tang, M. B., Kim, K. B., Theissmann, R., Baier, F., Wang, W. H., and Eckert, J., Phys. Rev. Lett. 94, 205501 (2005)Google Scholar
22. Stone, D. S., Yoder, K. B., and Sproul, W. D., J. Vac. Sci. Technol. A 9, 25432547 (1991)Google Scholar
23. Joslin, D. L. and Oliver, W. C., J. Mater. Res. 5, 123126 (1989)Google Scholar
24. Schuh, C. A. and Nieh, T. G., J. Mater. Res. 19, 4657 (2004)Google Scholar
25. Elmustafa, A. A., Kose, S., and Stone, D. S., J. Mater Res. 22, 926936 (2007)Google Scholar