Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-26T03:52:49.702Z Has data issue: false hasContentIssue false

Bio-mimetic integrated surface nano structures for medical imaging scintillation materials

Published online by Cambridge University Press:  15 January 2013

P. Pignalosa
Affiliation:
New York University, New York, NY City University of New York, SI/GC, New York, NY
B. Liu
Affiliation:
Department of Physics, Tongji University, Shanghai
W. Guo
Affiliation:
City University of New York, SI/GC, New York, NY
X. Duan
Affiliation:
Massauchusetts Institute of Technology, Cambridge, MA
Y. Yi*
Affiliation:
City University of New York, SI/GC, New York, NY Massauchusetts Institute of Technology, Cambridge, MA
*
Get access

Abstract

We have improved bio-inspired Moth eye nanostructures to enhance the scintillator materials external quantum efficiency significantly. As a proof of concept, we have demonstrated very high light output efficiency enhancement for Lu2SiO5:Ce3+ (LSO:Ce) film in large area. The X-ray mammographic instrument was employed to demonstrate the light output enhancement of the Lu2SiO5:Ce thin film with bio-inspired Moth eye-like nano photonic structures. Our work could be extended to other thin film scintillator materials and is promising to achieve lower patient dose, higher resolution image of human organs and even smaller scale medical imaging.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bailey, D. L., Karp, J. S., Surti, S., Positron Emission Tomography, Springer-Verlag London, 29 (2005)CrossRefGoogle Scholar
Derenzo, S. E., Weber, M. J., Bourret-Courchesne, E., Klintenberg, M. K., Nuclear Instruments and Methods in Physics Research A, 505, 111(2003)CrossRefGoogle Scholar
Weber, M. J., Journal of Luminescence, 100, 35 (2002)CrossRefGoogle Scholar
Yablonvitch, E., Physical Review Letters, 58, 2059 (1987)CrossRefGoogle Scholar
Vahala, K. J., Nature, 424, 839 (2003)CrossRefGoogle Scholar
Pendry, J., Science, 285, 1687 (1999)CrossRefGoogle Scholar
Boroditsky, M., Krauss, T. F., Coccioli, R., Vrijen, R., Bhat, R., Yablonovitch, E., Applied Physics Letters, 75, 1036 (1999)CrossRefGoogle Scholar
Ichikawa, H., Baba, T., Applied Physics Letters, 84, 457 (2004)CrossRefGoogle Scholar
Kronberger, M., Auffray, E., Lecoq, P., IEEE Transactions on nuclear science, 55, 1102 (2008)CrossRefGoogle Scholar
Knapitsch, A., Auffray, E., Fabjan, C. W., Leclercq, J.-L., Lecoq, P., Letartre, X., Seassal, C., Nuclear Instruments and Methods in Physics Research A, 628, 385(2011)CrossRefGoogle Scholar
Sun, C. H., Jiang, P., and Jiang, B., Appl. Phys. Lett., 92, 061112 (2008)CrossRefGoogle Scholar
Boden, S. A., Bagnall, D. M., Appl. Phys. Lett. 93, 133108 (2008)CrossRefGoogle Scholar
Sai, H., Kanamori, Y., Arafune, K., Ohshita, Y., Yamaguchi, M., Prog. Photovolt.: Res. Appl. 15, 415(2007)CrossRefGoogle Scholar