Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-26T03:58:53.243Z Has data issue: false hasContentIssue false

Aging Effect on the Microstructure of the Superalloy Inconel 939

Published online by Cambridge University Press:  01 February 2011

M. A. González
Affiliation:
Facultad de Ingeniería Mecánica y Eléctrica (FIME-UANL), Av. Universidad s/n. Ciudad Universitaria, C.P.66451 San Nicolás de los Garza, N.L., México
D. I. Martínez
Affiliation:
Facultad de Ingeniería Mecánica y Eléctrica (FIME-UANL), Av. Universidad s/n. Ciudad Universitaria, C.P.66451 San Nicolás de los Garza, N.L., México
A. Pérez
Affiliation:
Facultad de Ingeniería Mecánica y Eléctrica (FIME-UANL), Av. Universidad s/n. Ciudad Universitaria, C.P.66451 San Nicolás de los Garza, N.L., México
A. Garza
Affiliation:
Corporación Mexicana de Investigación en Materiales S.A. de C.V. (COMIMSA), Ciencia y Tecnología No.790, Saltillo 400, C.P. 25295 Saltillo Coah., Mexico. E-mail: mgonzalez@comimsa.com.mx
Get access

Abstract

In this work were evaluated the microestructural characteristics by Optical Microscopy (OM) and Scanning Electron Microscopy (SEM) of the intermetallic γ'(liquation, coarsening and decomposition) in the Inconel 939 alloy after 40000 hours and 850–900°C aging operation conditions. The alloy was vacuum conventional cast. The results show that the liquation phenomena take place in eutectics γ-γ' which are present mainly in the core of the dendritic arms and in the coarse films of carbides along the grain boundaries (GB), the γ' particles change their original morphology of ordered cuboids of 320nm to disordered and coarse cuboids of 1.2μm, carbides show a morphology change from the original dispersed particles into a coarse continuous films and particles Chinese script type, this affects adversely the mechanical properties such as creep. The results of this evaluation allow to determine the main microestructural damage mechanisms which experiment some components such as blades at high temperatures in industrial conditions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Jovanovic, M.T., Miskovic, Z., and Lukic, , Material Charact, 40:261(1998).Google Scholar
2. Lvov, G., Levit, V.I., and Kaufman, M.J., Metallurgical and Materials Trans., 35A,1669 (2004).Google Scholar
3. Delargy, K.M. and Smith, G.D.W., Metallurgical Tans., 14A, 1771 (1983).Google Scholar
4. Morozova, G.I., sorokina, L.P, and Bogina, N. Kh., Metallovedenie I Termicheskaya Obrabotka Metallov, 4, 29 (1985) [Metal Science Heat Treatment, 37, 160 (1995)].Google Scholar
5. Mazur, Z., Luna-Ramirez, A., Juarez-Islas, J. A., Campos-Amezcua, A., Engeniering Failure analysis, 12, 474 (2005).Google Scholar
6. Miskovic, Z., Jovanovic, M., Gligic, M. and Lukic, B., Vacumm, 43, 709 (1992).Google Scholar
7. Liburdi, J., Lowden, P., Nagy, D., Rusan de Priamus, T., and Shaw, S., Practical Experience with the Development of Superalloy Rejuvenation, edited by ASME (Turbo Expo, Power for Land, Sea and Air, GT59444, Orlando Florida, 2009) pp. 19.Google Scholar
8. Decker, R.F., Paul D. Merica Research Laboratory, Steel Strengthening Mechanism Symposium, 1 (1969).Google Scholar
9. Ojo, O.A., Richards, N.L., Chaturvedi, M.C., Material Science, 39, 7401 (2004).Google Scholar
10. Ojo, O.A., Richards, N.L., Chaturvedi, M.C., Scripta Materialia, 51, 141 (2004).Google Scholar
11. Ojo, O.A., Richards, N.L., Chaturvedi, M.C., Scripta Materialia, 50, 641 (2004).Google Scholar