Published online by Cambridge University Press: 01 February 2011
Simplified glass compositions were chosen to improve our knowledge of the alteration kinetics of complex glasses dedicated to the confinement of high-level waste. Since 1998, the sodium borosilicate glass system is at the center of a passionate debate between an affinity-based kinetic rate law and a protective surface layer theory. All the authors who have investigated ternary 68/14/18 SiO2–B2O3–Na2O glass agree on the fact that the affinity law cannot satisfactorily account for its alteration kinetics. Some authors explained that these discrepancies between classical kinetic rate law and experimental findings could be due to macromolecular amorphous separation in the 68/14/18 sodium borosilicate system and that this simplified glass could be divided into 90% reedmergnerite (NaBSi3O8) and 10% diborate (Na2O–2B2O3). This article provides evidence of the homogeneity of ternary 68/18/14 SiO2–B2O3–Na2O glass at nanometric scale and shows that even phase separation at less than nanometric scale could not explain the inability of hydrated glass-solution affinity laws to describe its alteration. The relative simplicity of the SiO2–B2O3–Na2O chemical system allows a critical examination of the macroscopic alteration laws developed over the last twenty years based only on the hydrated glass-solution chemical affinity without taking into account the formation and reactivity of the gel or its passivating properties.