No CrossRef data available.
Published online by Cambridge University Press: 22 May 2012
Highly mesoporous TiO2 nanoparticles (NPs) were synthesized by an aero-sol-gel process in this approach. By varying the mass fraction of inorganic templates, the formation of mesoporous TiO2 NPs with optimized surface area and pore volume distributions was examined. Then, the photovoltaic properties of the resulting mesoporous TiO2 NPs were systematically investigated by applying them into the photoanode of dye-sensitized solar cells (DSSCs). The mesoporous TiO2 NP-based DSSCs fabricated in this study showed an improved short circuit current density and power conversion efficiency compared with solid TiO2 NP-based DSSCs due to the increase of the amount of inorganic dye (N719) adsorption in the mesoporous TiO2 NPs. These mesoporous TiO2 NPs fabricated have a strong potential as an effective dye supporting and electron transfer medium to improve the photovoltaic performance of DSSCs.