Hostname: page-component-54dcc4c588-br6xx Total loading time: 0 Render date: 2025-09-17T02:03:04.885Z Has data issue: false hasContentIssue false

Accurate modeling of molecular crystal throughdispersion-corrected density functional theory (DFT-D)method

Published online by Cambridge University Press:  21 March 2011

Bohdan Schatschneider
Affiliation:
The Pennsylvania State University, Fayette-The Eberly Campus
Jian-jie Liang
Affiliation:
Accelrys, Inc., 10188 Telesis Court, Suite 100 San Diego, CA 92121 USA
Get access

Abstract

Crystal structure, pressure response, and polymorph transformation wereinvestigated for crystalline indole through dispersion-corrected densityfunctional theory (DFT-D) method. An accurate, nonempirical method (as inthe latest implementations of CASTEP) is used to correct for the general DFTscheme to include van der Waals interactions important in molecularcrystals. Ambient structural details, including space group symmetry,density, and fine structural details, such as bicyclic angles, have beenreproduced to within experimental accuracy. Pressure response of thestructure was obtained to isostatic pressure up to 25 GPa, in increments of1 GPa. Evolution of space group symmetry and the bicyclic angle were mappedas a function of pressure. A previously unknown phase transformation hasbeen identified around 14 GPa of isostatic pressure. Total energies of thephases before and after phase transformation are nearly identical, with aphase transformation barrier of 0.9 eV. The study opens up the door toreliable DFT investigations of chemical reactions of crystalline aromaticsystems under high pressure (e.g. formation of amorphous sp3hybridized phases).

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

REFERENCES

[1] Roychowhury, P.; Basak, B. S.; Acta Cryst. (1975) B31 1559.10.1107/S0567740875005687Google Scholar
[2] Bini, R.; Proceedings of the International School of Physics “Enrico Fermi” (2002) 147 455.Google Scholar
[3] Dunitz, J. D.; Mol. Cryst. Liq. Cryst. (1996) 279 209.Google Scholar
[4] Citroni, M.; Costantiani, B.; Bini, R.; Schettino, V.; J. Phys. Chem. B (2009) 113 13526.10.1021/jp907169pGoogle Scholar
[5] Lautie, A.; Lautie, M. F.; Gruger, A.; Fahkri, S. A.; Spectrochim. Acta (1980) 36A 85.10.1016/0584-8539(80)80062-6Google Scholar
[6] Sun, H.; Mumby, S. J., Maple, J. R.; Hagler, A. T.; J. Am. Chem. Soc. (1994) 116 2978.Google Scholar
[7] Sun, H.; Macromolecules (1995) 28 701.10.1021/ma00107a006Google Scholar
[8] Clark, S. J., Segall, M. D., Pickard, C. J., Hasnip, P. J., Probert, M. J., Refson, K., Payne, M. C.. Zeitschrift fuer Kristallographie. 220(5-6) pp. 567570 (2005)Google Scholar
[9] Perdew, J.P.; Burke, K.; Ernzerhof, M.Generalized Gradient Approximation Made Simple”, Phys. Rev. Lett., 77, 38653868 (1996).10.1103/PhysRevLett.77.3865Google Scholar
[10] Tkatchenko, A. and Scheffler, M.. PRL 102, 073005 (2009)10.1103/PhysRevLett.102.073005Google Scholar