Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T07:52:40.742Z Has data issue: false hasContentIssue false

3 Dimensional Carbon Nanostructures for Li-ion Battery Anode

Published online by Cambridge University Press:  15 April 2013

Chiwon Kang
Affiliation:
Nanomaterials and Device Laboratory, Department of Mechanical and Materials Engineering, Florida International University, 10555 West Flagler Street, Miami, FL 33174, USA
Rangasamy Baskaran
Affiliation:
Nanomaterials For Energy Lab, Department of Energy Engineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791, Korea
Won-Gi Kim
Affiliation:
Nanomaterials For Energy Lab, Department of Energy Engineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791, Korea
Yang-Kook Sun
Affiliation:
Nanomaterials For Energy Lab, Department of Energy Engineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791, Korea
Wonbong Choi*
Affiliation:
Nanomaterials and Device Laboratory, Department of Mechanical and Materials Engineering, Florida International University, 10555 West Flagler Street, Miami, FL 33174, USA Nanomaterials For Energy Lab, Department of Energy Engineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791, Korea Department of Materials Science and Engineering, University of North Texas, North Texas Discovery Park 3940 North Elm St. Suite E-132, Denton, TX 76207, USA
*
*Corresponding Author Email: wonbong.choi@unt.edu
Get access

Abstract

Carbon nanofibers (CNFs) have been thoroughly investigated as potential anode materials in Li-ion battery owing to their exceptional properties such as the higher surface area to mass ratio, electrical conductivity and mechanical toughness. However, one of the major limitations of nano carbon materials is lower mass loading density. To address this issue, we have developed a novel anode system composed of CNFs directly grown on 3D Cu mesh current collector (hereafter mentioned as 3D CNFs) using a thermal catalytic chemical vapor deposition (CVD) method. Compared to CNF-based anodes on 2D Cu current collector, active The active material loading amount of the 3D CNFs has been found to be 400 % higher while comparing with 2D CNF. Owing to an increase of the active surface area, 3D CNFs demonstrated enhanced electrochemical performance of Li-ion battery in terms of charge capacity (50% improvement), rate capability and cycling life. Interfacial contact between the CNFs and Cu could play a crucial role in promoting the electrochemical properties. The intermediate TiC thin layer, formed at high temperature 750°C, could function as an efficient electric conducting pathway and a strong bonding bridge between the CNFs and Cu. In order to improve the pristine 3D CNF redox reactions, the amorphous Si (a-Si)/3D CNF has been sputter deposited to produce Si wrapped 3D CNF hybrid anode material. It has been found that the electrochemical properties of the a-Si/3D CNF yields superior specific capacity (Cdis 549 mAhg-1, LiC4.1) and cycling stability than that of pristine 3D CNF (461 mAhg-1, LiC4.8).

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Nagaura, T., Tozawa, K., Prog. Batteries Sol. Cells 9, 209 (1990).Google Scholar
Larcher, D., Beattie, S., Morcrette, M., Edstroem, K., Jumas, J.C., Tarascon, J.M., J. Mater. Chem. 17, 3759 (2007).CrossRefGoogle Scholar
Park, M.H., Kim, M.G., Joo, J.B., Kim, K.T., Kim, J.Y., Ahn, S.H., Cui, Y., Cho, J.P., Nano Lett. 9, 3844 (2009).CrossRefGoogle Scholar
Chan, C.K., Peng, H.L., Liu, G., McIlwrath, K., Zhang, X.F., Huggins, R.A., Cui, Y., Nat. Nanotechnol. 3, 31 (2008).CrossRefGoogle Scholar
Poizot, P., Laruelle, S., Grugeon, S., Dupont, L., Tarascon, J.M., Nature 407, 496 (2000).CrossRefGoogle Scholar
Hosono, E., Fujihara, S., Honma, I., Zhou, H., Electrochem. Commun. 8, 284 (2006).CrossRefGoogle Scholar
Varghese, B., Reddy, M.V., Yanwu, Z., Lit, C.S., Hoong, T.C., Rao, G.V.S., Chowdari, B.V.R., Wee, A.T.S., Lim, C.T., Sow, C.-H., Chem. Mater. 20, 3360 (2008).CrossRefGoogle Scholar
Yoo, E.J., Kim, J., Hosono, E., Zhoi, H.-S., Kudo, T., Honma, I., Nano. Lett. 8, 2277 (2008).CrossRefGoogle Scholar
Che, G., Lakshmi, B.B., Fisher, E.R., Martin, C.R., Nature 393, 346 (1998).CrossRefGoogle Scholar
Reddy, A.L.M., Shaijumon, M.M., Gowda, S.R., Ajayan, P.M., Nano. Lett. 9, 1002 (2009).CrossRefGoogle Scholar
Varzi, A., Täubert, C., Wohlfahrt-Mehrens, M., Kreis, M., Schütz, W., J. Power. Sources. 196, 3303 (2011).CrossRefGoogle Scholar
Fan, Z.J., Yan, J., Wei, T., Ning, G.-Q., Zhi, L.-J., Liu, J.-C., Cao, D.-X., Wang, G.-L., and Wei, F., ACS Nano. 5, 2787 (2011).CrossRefGoogle Scholar
Landi, B.J., Ganter, M.J., Cress, C.D., DiLeo, R.A., Raffaelle, R.P., Energy Environ. Sci. 2, 638 (2009).CrossRefGoogle Scholar
Lahiri, I., Oh, S.W., Hwang, J.Y., Cho, S.J., Sun, Y.K., Banerjee, R., Choi, W.B., ACS Nano 4, 3440 (2010).CrossRefGoogle Scholar
Lahiri, I., Oh, S.M., Hwang, J.Y., Kang, C.W., Choi, M.S., Jeon, H.T., Banerjee, R., Sun, Y.K., Choi, W.B., J. Mater. Chem. 21, 13621 (2011).CrossRefGoogle Scholar
Gogotsi, Y., Simon, P., Science 34, 917 (2011).CrossRefGoogle Scholar
Zhang, H., Yu, X., Braun, P.V., Nat. Nanotechnol. 6, 277 (2011).CrossRefGoogle Scholar
Cheah, S.K., Perre, E., Rooth, M., Fondell, M., Hårsta, A., Nyholm, L., Boman, M., Gustafsson, T., Lu, J., Simon, P., Edström, K., Nano Lett. 9, 3230 (2009).CrossRefGoogle Scholar
Gao, B., Bower, C., Lorentzen, J.D., Fleming, L., Kleinhammes, A., Tang, X.P., McNeil, L.E., Wu, Y., Zhou, O., Chem. Phys. Lett. 327, 69 (2000).CrossRefGoogle Scholar
Shin, H.-C., Liu, M., Sadanadan, B., Rao, A.M., J. Solid State Electrochem. 8, 908 (2004).CrossRefGoogle Scholar
Iqbal, Z., Vepiek, S., J. Phys. C: Solid State Phys. 15, 377 (1982).CrossRefGoogle Scholar
Winter, M., Moeller, K.-C., Besenhard, J.O., in: Nazri, G.-A., Pistoia, G. (Eds.), Lithium Batteries: Science and Technology, (Springer, New York, 2004), pp.144194.Google Scholar
Casas, C.D.L., Li, W., J. Power Sources 208, 74 (2012).CrossRefGoogle Scholar