Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T10:11:24.875Z Has data issue: false hasContentIssue false

Abrasion Damage to Lightguide Fiber Surfaces

Published online by Cambridge University Press:  10 February 2011

C. R. Kurkjian
Affiliation:
Bellcore, Morristown, NJ 07960, ckurkjia@notes.cc.bellcore.com
M. J. Matthewson
Affiliation:
Ceramic and Materials Engineering, Rutgers University, Piscataway, NJ
M. M. Chaudhri
Affiliation:
Cavendish Laboratory, University of Cambridge, Cambridge, UK
Get access

Abstract

The two general types of strength-reducing defects most commonly found in lightguide fibers are those due to chemical interactions of refractory particles with the hot glass and those due to mechanical damage resulting from indentation or scratching. In this paper we review some work on the mechanical damage in silica lightguide fibers and some of the approaches which have been taken to simplify the study of such damage. We are reminded that the indentation and scratching behavior of silica glass is not simple and that in all probability there are a variety of different types of flaws which may have different fatigue and aging behavior, and therefore result in different lifetimes. It is therefore suggested that either the actual proof test level flaws, or at least a wide variety of synthetic flaws, must be studied in order to develop sufficient background and experience to confidently predict fiber lifetimes.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kurkjian, C. R. and Paek, U.C., Appl. Phys. Lett. 42, 251 (1983).10.1063/1.93905Google Scholar
2. Proctor, B., Phys. Chem. Glasses. 31, 78 (1990).Google Scholar
3. Paek, U. C. and Kurkjian, C. R., unpublished work, 1983.Google Scholar
4. Matthewson, M. J. Kurkjian, C. R. and Hamlin, J. R., J. Lightwave Tech., 15, 490 (1997).10.1109/50.557565Google Scholar
5. Yuce, H-H, Key, P. L. and T.Wei, Proc. IWCS, 400 (1990).Google Scholar
6. Marshall, D. B. and Lawn, B. R., J. Am. Ceram. Soc., 63, 532 (1980)10.1111/j.1151-2916.1980.tb10759.xGoogle Scholar
7. Arora, A., Marshall, D. B., Lawn, B. R. and Swain, M. V., J. Non-Cryst. Solids, 31, 415 (1979).10.1016/0022-3093(79)90154-6Google Scholar
8. Cook, R. F. and Pharr, G. M., J. Am. Ceram. Soc., 73, 787 (1990).10.1111/j.1151-2916.1990.tb05119.xGoogle Scholar
9. Dabbs, T. P., Marshall, D. B. and Lawn, B. R, J. Am. Ceram. Soc, 68, C224 (1980).10.1111/j.1151-2916.1980.tb10696.xGoogle Scholar
10. Kurkjian, C. R., Kammlott, G. K. and Chaudhri, M. M., J. Am. Ceram. Soc. 78, 737 (1995).10.1111/j.1151-2916.1995.tb08241.xGoogle Scholar
11. Lin, B. and Matthewson, M. J., Philos. Magazine, 74, p. 1235 (1996).10.1080/01418619608239723Google Scholar
12. Baikova, L. G., Pukh, V. P and Talalakin, S. N., Sov. Phys., Solid State, 15, 1437 (1974).Google Scholar
13. Kurkjian, C. R., Gebizlioglu, O. S. and Semjonov, S. L., Proc. NFOEC, 63(1997).Google Scholar
14. Pharr, G. M., Harding, D. S. and Oliver, W. C. in Mechanical Properties and Deformation Behavior of Materials Having Ultra-fine Microstructures, ed. Nastasi, M., et. al., Kluwer Pub., the Netherlands, 449 (1993).10.1007/978-94-011-1765-4_29Google Scholar
15. Symonds, B. L, Cook, R. F. and Lawn, B. R., J. Mat. Sci., 18, 1306 (1983).10.1007/BF01111947Google Scholar
16. Mould, R. D. and Southwick, R. D., J. Am. Ceram. Soc. 42, 582 (1959).10.1111/j.1151-2916.1959.tb13578.xGoogle Scholar
17. Swain, M. V. and Hagan, J. T., Eng. Fracture Mechanics, 10, 299 (1978).10.1016/0013-7944(78)90013-9Google Scholar