Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T13:50:37.167Z Has data issue: false hasContentIssue false

Ablation of Si and Ge Using UV Femtosecond Laser Pulses

Published online by Cambridge University Press:  15 February 2011

G. Herbst
Affiliation:
Deutsche Telekom, Forschungszentrum, Agastrasse, D-12489 Berlin, Germany
M. Steiner
Affiliation:
Deutsche Telekom, Forschungszentrum, Agastrasse, D-12489 Berlin, Germany
G. Marowsky
Affiliation:
Laser-Laboratorium Göttingen, Hans-Adolf-Krebs-Weg 1, D-37077 Göttingen, Germany
E. Matthias
Affiliation:
Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
Get access

Abstract

Laser ablation of silicon and germanium was carried out in moderate vacuum with l00fs to 400fs pulses at 248nm and intensities up to 3x1013 W/cm2. Evidence for non-thermal material removal was found. Imaged multishot ablation patterns display the intensity dependent self-structuring effect, forming well-known columnar structures. It is shown that continued irradiation of these structures eventually results in comparatively clean ablation. An increase of ablation rate with depth was observed. The reason is an intensity enhancement inside the pits by reflective focussing to a level where bond-breaking takes place. Furthermore, it was noticed that ablation contours can be significantly improved by electrically grounding the target.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Preuss, S., Matthias, E., Stuke, M., Appl. Phys. A 59, 79 (1994).Google Scholar
Küper, S., Stuke, M., Microelectronic Engineering 9, 475 (1989).Google Scholar
Kautek, W., Krüger, J., SPIE Proc. Vol. 2207, paper no. 77 (1994).Google Scholar
Ihlemann, J., Scholl, A., Schmidt, H., Wolff-Rottke, B., Appl. Phys. A 60, 411 (1995).Google Scholar
Preuss, S., Demchuk, A., Stuke, M., Appl. Phys. A 61, 33 (1995).Google Scholar
Stampfli, P., Bennemann, K.H., Appl. Phys. A 60, 191 (1995).Google Scholar
Price, D.F., More, R.M., Walling, R.S., Guethlein, G., Shepherd, R.L., Steward, R.E., White, W.E., Phys. Rev. Lett. 75, 252 (1995).Google Scholar
Szatmári, S., Schäfer, F.P., Appl. Phys. B 46, 305 (1988); Optics Comm. 68, 196 (1988).Google Scholar
Foltyn, S.R., Dye, R.C., Ott, K.C., Hubbard, K.M., Hutchinson, W., Muenchausen, R.E., Estler, R.C., Wu, X.D., Appl. Phys. Lett. 59, 594 (1991).Google Scholar
Sanders, B.W. and Post, M.L. in Laser Ablation in Materials Processing:Fundamentals and Applications, edited by Braren, B., Dubowski, J.J., Norton, D.P. (Mat. Res. Soc. Proc. 285, Pittsburgh, PA, 1993) pp. 427432.Google Scholar
Venkatesan, T., in Laser Ablation, edited by Miller, J.C. (Springer Ser. Mat. Sci. 28, Springer Verlag Berlin Heidelberg 1994) pp. 85106.Google Scholar
V.P. Veiko, , S.M. Metev, , A.I. Kaidanov, , M.N. Libenson, , E.B. Jakolev, , J. Phys. D: Appl. Phys., 13, 1565 (1980)Google Scholar
Siegman, A.E. and Fauchet, P.M., IEEE J. Quantum. Electron. Q E 22, 1384 (1986) J. Hohlfeld, private communicationGoogle Scholar