Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T13:46:37.247Z Has data issue: false hasContentIssue false

3-dimensional imaging of dislocation microstructures by electron beams

Published online by Cambridge University Press:  27 February 2012

J. S. Barnard
Affiliation:
Department of Materials Science & Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB3 2QZ, United Kingdom.
J. H. Sharp
Affiliation:
Department of Materials Science & Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD, United Kingdom.
S. Hata
Affiliation:
Department of Electrical and Materials Science, Kyushu University, Kasuga, 6-1 Kasugakoen, Kasuga, Fukuoka 816-8580, Japan.
M. Mitsuhara
Affiliation:
Department of Electrical and Materials Science, Kyushu University, Kasuga, 6-1 Kasugakoen, Kasuga, Fukuoka 816-8580, Japan.
K. Kaneko
Affiliation:
Department of Materials Science & Engineering, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan.
K. Higashida
Affiliation:
Department of Electrical and Materials Science, Kyushu University, Kasuga, 6-1 Kasugakoen, Kasuga, Fukuoka 816-8580, Japan.
Get access

Abstract

We review the progress in the electron tomography of dislocation microstructures in the transmission electron microscope (TEM). Dislocation contrast is visible both in conventional TEM and scanning TEM (STEM) modes and, despite the complicated intensity variations, dislocation contrast can be isolated using computational filtering techniques prior to reconstruction. We find that STEM annular dark-field (STEM-ADF) imaging offers significant advantages in terms of dislocation contrast and background artifacts. We present several examples, both in semiconducting and metallic systems, illustrating the properties of 3D dislocations. We present the high-angle triple-axis (HATA) specimen holder where the diffraction condition can be chosen at will and dislocation tomograms of multiple reflections can be combined. 3D dislocations are analyzed in terms of dislocation density and dislocation nodal structures. Several avenues of study are suggested that may exploit the 3D dislocation data.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lang, A. R., Acta. Cryst. 12, 249 (1959)Google Scholar
2. Basinski, Z. S., Proc. 5th ICEM. B13 (1962)Google Scholar
3. Ludwig, W., Cloetens, P., Härtwig, J., Baruchel, J., Hamelin, B. and Bastie, P., J. Appl. Cryst. 34, 602 (2001)Google Scholar
4. Barnard, J. S., Sharp, J., Tong, J. R. and Midgley, P. A., Science, 313, 319 (2006)Google Scholar
5. Barnard, J. S., Sharp, J., Tong, J. R. and Midgley, P. A., Phil. Mag., 86, 4901 (2006)Google Scholar
6. Hirsch, P. B., Howie, A. and Whelan, M. J., Proc. Roy. Soc. Lond. A252, 499 (1960)Google Scholar
7. Howie, A. and Whelan, M. J., Proc. Roy. Soc. Lond. A267, 206 (1962)Google Scholar
8. Cockayne, D. J. H., Ray, I. L. F. and Whelan, M. J., Phil. Mag. 20, 1265 (1969)Google Scholar
9. Barnard, J. S., Eggeman, A. S., Sharp, J., White, T. A. and Midgley, P. A., Phil. Mag., 90, 4711 (2010)Google Scholar
10. Schaublin, R. and Stadelman, P., Mater. Sci. Eng. A164, 373 (1993)Google Scholar
11. Amano, H., Sawaki, N. and Akasaki, I., Appl. Phys. Lett. 48, 353 (1986)Google Scholar
12. Hirsch, P. B., Howie, A., Nicholson, R. B., Pashley, D. W. and Whelan, M. J., Electron Microscopy of Thin Crystals, Plenum Press, New York (1965)Google Scholar
13. Sharp, J. H., Barnard, J. S., Kaneko, K., Higashida, K. and Midgley, P. A., J. Phys. Conf. Ser. 126, 012013 (2008)Google Scholar
14. Tanaka, M., Higashida, K., Kaneko, K., Hata, S. and Mitsuhara, M., Script. Mat. 59, 901 (2008)Google Scholar
15. Hirsch, P. B., Roberts, S. G. and Samuels, J., Proc. Roy. Soc. Lond. A412, 25 (1989)Google Scholar
16. Hata, S., Miyazaki, H., Miyazaki, S., Mitsuhara, M., Tanaka, M., Kaneko, K., Higashida, K., Ikeda, K., Nakashima, N., Matsuhara, S., Barnard, J. S., Sharp, J. H. and Midgley, P.A., Ultramicroscopy, 111, 1168 (2011)Google Scholar
17. Mader, S., Seeger, A. and Leitz, C., J. Appl. Phys. 34, 3376 (1963)Google Scholar
18. Perovic, D. D., Rossouw, C. J. and Howie, A., Ultramicroscopy, 52, 353 (1993)Google Scholar
19. Bulatov, V. V., Hsiung, L. L., Tang, M., Arsenlis, A., Bartelt, M. C., Cai, W., Florando, J. N., Hiratani, M., Rhee, M., Hommes, G., Pierce, T. G. and de la Rubia, T. D., Nature, 440, 1174 (2006)Google Scholar
20. Kraft, O., Gruber, P. A., Mönig, R. and Weygand, D., Annu. Rev. Mater. Res. 40, 293 (2010)Google Scholar
21. Tanaka, M., Higashida, K., Kaneko, K., Hata, S. and Mitsuhara, M., Script. Mat. 59, 901 (2008)Google Scholar
22. Tanaka, M., Liu, G. S., Kishida, T., Higashida, K. and Robertson, I. M., J. Mater. Res. 25, 2292 (2010)Google Scholar