Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T15:01:33.554Z Has data issue: false hasContentIssue false

3-D optical modeling of single and multi-junction thin-film silicon solar cells on gratings

Published online by Cambridge University Press:  17 May 2012

O. Isabella
Affiliation:
Delft University of Technology – PVMD/DIMES, P.O. Box 5053, 2628 CD Delft, Netherlands
S. Solntsev
Affiliation:
Delft University of Technology – PVMD/DIMES, P.O. Box 5053, 2628 CD Delft, Netherlands
D. Caratelli
Affiliation:
Delft University of Technology – IRCTR, P.O. Box 5031, 2600 GA Delft, Netherlands
M. Zeman
Affiliation:
Delft University of Technology – PVMD/DIMES, P.O. Box 5053, 2628 CD Delft, Netherlands
Get access

Abstract

Three-dimensional (3-D) optical modeling based on Finite Element Method of single, double, and triple junction thin-film silicon solar cells is presented. The combination of front periodic gratings with optimal geometrical parameters and rear ZnO/Ag reflector constitutes an efficient light trapping scheme for solar cells in superstrate (pin) configuration. The application of optimized trapezoidal 1-D and 2-D gratings resulted in 25.5% (1-D case) and 32.5% (2-D case) increase in photo-current density with respect to the flat solar cell. The application of inverted pyramidal 2-D gratings in double and triple junction silicon solar cells with very thin absorber layers resulted in a photo-current density > 11 mA/cm2 and > 9 mA/cm2, respectively.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Zeman, M., in Advanced Amorphous Silicon Solar Cell Technology, in Thin Film Solar Cells: Fabrication, Characterization and Applications, edited by Poortmans, J. (Archipov V. Wiley, Chichester, 2006), p. 173236.CrossRefGoogle Scholar
Isabella, O., Čampa, A., Heijna, M., et al. ., Proceedings of the 23rd European Photovoltaic Solar Energy Conference: Valencia, Spain, 2008; 23202324.Google Scholar
Isabella, O., Moll, F., Jrč, K., and Zeman, M., (2010), Phys. Status Solidi A, 207: 642646.CrossRefGoogle Scholar
Battaglia, C., Hsu, C.-M., Söderström, K., et al. ., ACS Nano 2012 6 (3), 27902797.CrossRefGoogle Scholar
Söderström, T., Haug, F.-J., Niquille, X., and Ballif, C., (2009) Prog. Photovolt: Res. Appl., 17: 165176.CrossRefGoogle Scholar
Ferry, V. E., Verschuuren, M. A., Li, H. B. T., et al. ., Optics Express 2010; 18S2: A237A245.CrossRefGoogle Scholar
Biswas, R. and Xu, C., Optics Express, Vol. 19, Issue S4, pp. A664A672 (2011).CrossRefGoogle Scholar
Steltenpool, M., Rutten, J., Van der Hofstad, G., et al. ., Proceedings of the 26th European Photovoltaic Solar Energy Conference : Hamburg, Germany, 2011; 26002603.Google Scholar
Söderström, T., Haug, F.-J., Terrazzoni-Daudrix, V., and Ballif, C., J. Appl. Phys. 107, 014507 (2010).CrossRefGoogle Scholar
Solntsev, S. and Zeman, M., Energy Procedia 10 (2011) 308312.CrossRefGoogle Scholar
Haug, F.-J., Söderström, T., Cubero, O., et al. ., Materials Research Society Symposium Proceedings 2008; 1101: KK13KK.CrossRefGoogle Scholar
Čampa, A., Isabella, O., van Erven, R., et al. ., (2010), Prog. Photovolt: Res. Appl., doi: 10.1002/pip.940.Google Scholar
Isabella, O., Solntsev, S., Caratelli, D., and Zeman, M., (2012), Prog. Photovolt: Res. Appl., doi: 10.1002/pip.1257.Google Scholar
Sap, J. A., Isabella, O., Jäger, K., and Zeman, M., Thin Solid Films 2011; 520(3): 10961101.CrossRefGoogle Scholar
Haug, F.-J., Söderström, K., Naqavi, A., et al. ., J. Appl. Phys. 109, 084516 (2011).CrossRefGoogle Scholar
Lipovšek, B., Cvek, V., Čampa, A., et al. ., Proceedings of the 25th European Photovoltaic Solar Energy Conference: Valencia, Spain, 2008; 31203123.Google Scholar
Tiedje, T., Yablonovitch, E., Cody, G. D., et al. ., IEEE Transactions on Electron Devices, Vol. ED-31, No. 5, May 1984.Google Scholar
Deckmann, H. W., Wronski, C. R., Witzke, H., et al. ., Applied Physics Letters 42, 968 (1983).CrossRefGoogle Scholar