Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-26T01:34:01.391Z Has data issue: false hasContentIssue false

3-D Finite Element Simulation of a Phase-change Random Access Memory Cell with a Self-insulated Structure

Published online by Cambridge University Press:  01 February 2011

Ke Sun
Affiliation:
ksun@ucla.edu, University of California, Los Angeles, Materials Science and Engineering, Los Angeles, California, United States
Wen Feng
Affiliation:
wenfeng@ucla.edu, University of California, Los Angeles, Materials Science and Engineering, Los Angeles, California, United States
Jae Young Lee
Affiliation:
abinitio@ucla.edu, University of California, Los Angeles, Materials Science and Engineering, Los Angeles, United States
Biyun Li
Affiliation:
bigwon@ucla.edu, University of California, Los Angeles, Materials Science and Engineering, Los Angeles, California, United States
Ya-Hong Xie
Affiliation:
yahong.xie@gmail.com, University of California, Los Angeles, Materials Science and Engineering, Los Angeles, California, United States
Get access

Abstract

In this paper, we proposed a phase-change random access memory (PCRAM) cell with a self-insulated structure (SIS), which is expected to have better thermal efficiency than the conventional structures. 3-D finite element simulation is used to study the most power consuming RESET process for both SIS and conventional normal bottom contact (NBC) cells driven by a MOSFET. Instead of programming current, power consumption is investigated to give a more fundamental comparison between the two structures. Thermal proximity effect for both kinds of cells is directly analyzed by simulating a 3×3 device array. The potential slow-quenching issue of SIS is also discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lai, S., Tech. Dig. - Int. Electron Devices Meet. p. 255 (2003)Google Scholar
2. Wicker, G., SPIE Conference on Electronics and Structures for MEMS, 3891, 2 (1999)Google Scholar
3. Ahn, S. J., Hwang, Y. N., Song, Y. J., Lee, S. H., Lee, S. Y., Park, J. H., Jeong, C. W., Ryoo, K. C., Shin, J. M., and Park, J. H. et al., Symposium on VLSI, Technology Digest of Technical Papers, p. 98 (2005)Google Scholar
4. Ahn, S. J., Song, Y. J., Jeong, C. W., Shin, J. M., Fai, Y., Hwang, Y. N., Lee, S. H., Ryoo, K. C., Lee, S. Y., Park, J. H. et al., Tech. Dig. - Int. Electron Devices Meet. p. 907 (2004)Google Scholar
5. Honi, H., Yi, J. H., Park, J. H., Ha, Y. H., Baek, I. G., Park, S. O., Hwang, Y. N., Lee, S. H., Kim, Y. T., Lee, K. H. et al., Symposium on VLSl Technology Digest of Technical Papers, p. 177 (2003)Google Scholar
6. Matsuzaki, N., Kurotsuchi, K., Matsui, Y., Tonomura, O., Yamamoto, N., Fujisaki, Y., Kitai, N., Takemura, R., Osada, K., Hanzawa, S. et al., Tech. Dig. - Int. Electron Devices Meet. p.738 (2005)Google Scholar
7. Ha, Y. H., Yi, J. H., Horii, H., Park, J. H., Joo, S. H., Park, S. O., Chung, U-In, Moon, J. T., Symposium on VLSI Circuits, 2003, Digest of Technical Papers (IEEE, New York, 2003), p. 175.Google Scholar
8. Lankhorst, M. H. R., Ketelaars, B. W., Wolters, R. A. M., Nature Materials, 4, p. 347 (2005)Google Scholar
9. Merget, F., Kim, D. H., Haring Bolivar, P., Kurz, H., Microsyst Technol, p. 169 (2007)Google Scholar
10. Hwang, Y. N., Lee, S. H., Ahn, S. J., Lee, S. Y., Ryoo, K. C., Hong, H. S., Koo, H. C., Yeung, F., Oh, J. H., Kim, H. J. et al, Tech. Dig. - Int. Electron Devices Meet. p. 893 (2003)Google Scholar
11. Chao, D. S., Chen, Y. C., Chen, F., Chen, M. J., Yen, P. H., Lee, C. M., Chen, W. S., Lien, C., Kao, M. J., and Tsai, M. J., IEEE Electron Device Lett. 28, 871 (2007)Google Scholar
12. Chen, Y. C., Rettner, C. T., Raoux, S., Burr, G. W., Chen, S. H., Shelby, R. M., Salinga, M., Risk, W. P., Happ, T. D., McClelland, G. M. et al, Tech. Dig. - Int. Electron Devices Meet. p. 1 (2006)Google Scholar
13. Kim, D. H., Merget, F., Forst, M., and Kurz, H., J. Appl. Phys. 101, 064512 (2007)Google Scholar
14. The International Technology Roadmap for Semiconductors: Process Integration, Devices, and Structures (2006 Update)Google Scholar
15. Kang, D. H., Ahn, D. H., Kim, K. B., Webb, J. F. and Yi, K. W.: J. Appl. Phys. 94, 3536 (2003)Google Scholar
16. Zhao, R., Chong, T.C., Shi, L.P., Tan, P.K., Lim, K.G., Yang, H.X., Lee, H.K., Hu, X., Li, J.M., Miao, X.S. et al, Non-Volatile Memory Technology Symposium (IEEE, 2005), p. 110 Google Scholar
17. Ruitenberg, G., Petford-Long, A. K., and Doole, R. C., J. Appl. Phys. 92, 3116 (2002).Google Scholar
18. Kim, S. S., Jeong, S. M., Lee, K. H., Park, Y. K., Kim, Y. T., Kong, J. T. and Lee, H. L., Jap. J. of Appl. Phys. 44, p. 5943 (2005)Google Scholar
19. Yin, Y., Sone, H. and Hosaka, S., Jap. J. of Appl. Phys. 45, p. 6177 (2006)Google Scholar
20. Pirovano, A., Lacaita, A. L., Benvenuti, A., Pellizzer, F., Hudgens, S., and Bez, R., Tech. Dig. - Int. Electron Devices Meet. p. 699 (2003)Google Scholar
21. Kim, K., and Lee, S. Y., Microelectronic Engineering 84, p. 1976 (2007)Google Scholar
22. Lacaita, A. L., Redaelli, A., Ielmini, D., Pellizzer, F., Pirovano, A., Benvenuti, A., and Bez, R., Tech. Dig. - Int. Electron Devices Meet. p. 911 (2004)Google Scholar