Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T00:26:12.206Z Has data issue: false hasContentIssue false

2d And 3d Acoustic Metamaterials Using Space Coil Design

Published online by Cambridge University Press:  11 February 2015

Santosh K. Maurya
Affiliation:
Nanostructure Engineering and Modeling LaboratoryDepartment of Metallurgical Engineering and Materials ScienceIndian Institute of Technology Bombay Mumbai, 400076
Manu Sahay
Affiliation:
Nanostructure Engineering and Modeling LaboratoryDepartment of Metallurgical Engineering and Materials ScienceIndian Institute of Technology Bombay Mumbai, 400076
Shobha Shukla
Affiliation:
Nanostructure Engineering and Modeling LaboratoryDepartment of Metallurgical Engineering and Materials ScienceIndian Institute of Technology Bombay Mumbai, 400076
Sumit Saxena
Affiliation:
Nanostructure Engineering and Modeling LaboratoryDepartment of Metallurgical Engineering and Materials ScienceIndian Institute of Technology Bombay Mumbai, 400076
Get access

Abstract

Various promising applications such as acoustic cloaking, sub-wavelength imaging, acoustic wave manipulation, transmission or reflection control etc. are feasible because of the ability of manipulating sounds and vibrations using artificially engineered “Acoustics meta-materials”. Recent works on space-coiling acoustic metamaterials show their extreme constitutive parameters like large refractive index, double negativity and zero mass density. Three dimensional structures have a wide application in sub-wavelength broadband acoustic wave suppression due to huge attenuation. Here we report the study of propagated and transmitted wave through 3D acoustic metamaterials structure using finite element method. Our simulations on 3D structure show a huge absorption/damping over few hundreds kilohertz frequency range.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Shen, H., Wen, J., P Pa¨ıdoussis, M., Yu, D., Cai, Li and Wen, X., Mater. Sci. Eng. 21, 065011(2013)Google Scholar
Zhang, X. and Liu, Z., Appl. Phys. Lett. 85, 341 (2004)CrossRefGoogle Scholar
Zhang, S., Yin, L., and Fang, N., Phys. Rev. Lett. 102,194301 (2009).CrossRefGoogle Scholar
Li, J., Fok, L., Yin, X., Bartal, G., and Zhang, X., NatureMater. 8, 931 (2009).CrossRefGoogle Scholar
Jia, H., Ke, M., Hao, R., Ye, Y., Liu, F., and Liu, Z., Appl.Phys. Lett. 97, 173507 (2010).CrossRefGoogle Scholar
Zhu, J., Christensen, J., Jung, J., Martin-Moreno, L., Yin, X., Fok, L., Zhang, X., and Garcia-Vidal, F. J., Nature Phys. 7,52 (2011).CrossRefGoogle Scholar
Lee, H. J., Kim, H.W., and Kim, Y.Y., Appl. Phys. Lett. 98, 241912 (2011).CrossRefGoogle Scholar
Zhou, X. and Hu, G., Appl. Phys. Lett. 98, 263510 (2011).CrossRefGoogle Scholar
Lu, M. H., Liu, X. K., Feng, L., Li, J., Huang, C. P., Chen, Y. F., Zhu, Y.Y., Zhu, S. N., and Ming, N. B., Phys. Rev.Lett. 99, 174301 (2007).CrossRefGoogle Scholar
Christensen, J., Martin-Moreno, L., and Garcia-Vidal, F. J., Phys. Rev. Lett. 101, 014301 (2008).CrossRefGoogle Scholar
Estrada, H., Candelas, P., Uris, A., Belmar, F., de Abajo, F. J.G.,and Meseguer, F., Phys. Rev. Lett. 101, 084302 (2008).CrossRefGoogle Scholar
Liang, Z. and Li, J., Phys. Rev. Lett. 108,114301 (2012).CrossRefGoogle Scholar
Li, J. and Chan, C.T., Phys. Rev. Lett. E 70, 055602 (2004)CrossRefGoogle Scholar
Xie, Y., Popa, B. I., Zigoneanu, L., and Cummer, S. A., Phys. Rev. Lett.110, 175501 (2013).CrossRefGoogle Scholar
Frenzel, T., Brehm, J. D., Buckmann, T., Schittny, R., Kadic, M. and Wegner, M., Appl. Phys. Lett. 103, 061907 (2013).CrossRefGoogle Scholar