Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-27T14:08:02.988Z Has data issue: false hasContentIssue false

1MeV electron irradiation effects of GaAs/Si solar cells

Published online by Cambridge University Press:  01 February 2011

N. Chandrasekaran
Affiliation:
Department of Environmental Technology and Urban Planning, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466–8555, Japan.
T. Soga
Affiliation:
Department of Environmental Technology and Urban Planning, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466–8555, Japan.
Y. Inuzuka
Affiliation:
Department of Environmental Technology and Urban Planning, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466–8555, Japan.
M. Imaizumi
Affiliation:
Japan Aerospace Exploration Agency, Tsukuba, 305–8505, Japan.
H. Taguchi
Affiliation:
Department of Environmental Technology and Urban Planning, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466–8555, Japan.
T. Jimbo
Affiliation:
Department of Environmental Technology and Urban Planning, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466–8555, Japan.
Get access

Abstract

The characteristics of 1 MeV electron irradiated GaAs solar cells grown on GaAs and Si substrates are studied under dark and AM 0 conditions. The short circuit currents (Isc) for GaAs/GaAs cell and GaAs/Si cell have been decreased at higher fluences. The degradation rate of Voc and Pmax for GaAs/Si is slower than that of GaAs/GaAs at the fluence 1×1016 cm−2. This is due to the high radiation resistance of saturation current. It has been due to slow generation of arsnic vacancies related defect (VAs) in the GaAs/Si solar cell, which is determined by photoluminescence analyses and deep level transient spectroscopy.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Knechtli, , Loo, R. Y., and Kamath, G. S., IEEE Trans. Electron Dev. ED–31, 577(1984).Google Scholar
[2] Soga, T., Baskar, K., Kato, T., Jimbo, T., and Umeno, M., J. Cryst. Growth 174, (1997) 579.Google Scholar
[3] Yamaguchi, M.: J. Mater. Res. 6(1991) 376.Google Scholar
[4] Imaizumi, M‥, Matsuda, S., Yamaguchi, M., and Ohara, T., Proc., 28 th IEEE Photovoltaic Specialists Conference, Sep 2000, Anchorage, USA. P.776.Google Scholar
[5] Itoh, Y., Yamaguchi, M., Nishioka, T. and Yamamoto, A. J. Appl. Phys., 61 (1987) 762.Google Scholar
[6] Bourgoin, J. C, von Bardeleben, H. J, J. Appl Phys 64, (1988) R65-R91.Google Scholar
[7] Goswami, N.G., Newman, R.C, and Whitehouse, J.E. Solid State Communications, vol. 40, (1981) 473.Google Scholar
[8] Mattile, T. and Nieminen, R. M., Phys. Rev lett., 74, (1995) 2721.Google Scholar
[9] Soga, T., Chandrasekaran, N., Imaizumi, M., Inuzuka, Y., Taguchi, H., Jimbo, T. and Matsuda, S.. Jpn. J. Appl. Phys. 42 (2003) 1054.Google Scholar
[10] Akiyama, M., Kawarada, Y. and Kaminishi, K., J. Crystal Growth 68 (1984) 21.Google Scholar
[11] Sze, S.M., Semiconductor Devices: physics and Technology. John Willey & sons USA (2002).Google Scholar
[12] Look, D. C. and Sizlove, J. R., J. Appl. Phys 62, (1987) 3660.Google Scholar
[13] Martin, G. M., Mintonneau, A., and Mircea, A., Electron Lett. 13, (1977) 191.Google Scholar
[14] Stievnard, D., Bboddaert, X., Bourgoin, J. C., Bardeleben, H. J., Phycal Review B, 41, (1990) 5271.Google Scholar
[15] Yousefi, H., Webb, J. B., Rousin, R., Kanna, S. M.. J. Electron Mater. 24, (1995) 15.Google Scholar
[16] Kim, E. K, cho, H.Y., Kim, Y., Kim, M.S., Kim, H.S. and Min, S.k, J. Appl. Phy′s. 67, (1990) 2554.Google Scholar
[17] Huang, Y., Yu, P. Y., Lee, H. and Wang, S. Appl. Phys. Lett., 52, 579 (1988)Google Scholar
[18] Khanna, S. M., Houdayer, A., Jorio, A., Carlone, C., Parenteasu, M., and Gerdes, J. W. Jr, IEEE Trans. Nucl. Sci. 43, (1996) 2601.Google Scholar