No CrossRef data available.
Published online by Cambridge University Press: 21 March 2011
We studied the low frequency noise in top-contact pentacene Thin Film Transistors (TFTs). The relative spectral noise density of the drain current fluctuations SI/I2 had a form of 1/f noise in the measured frequency range 1Hz - 3.5kHz.
Our studies of the noise dependencies on the gate-source VGS and drain-source VDS voltages showed that the dependencies differed from those observed for conducting polymers and resembled those reported for crystalline Si n-MOSFETs.
To compare the device noise level with those of other devices and materials, we extracted the Hooge parameter α. In order to calculate the total number of carriers we used a model simulating the device DC characteristics, similar to that for amorphous Si TFTs. The extracted Hooge parameter was 0.04. For an organic material this is an extremely small value, which is three orders of magnitude smaller that the Hooge parameter values reported for conducting polymers and only several times higher than the values for amorphous Si TFTs.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.