Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-26T00:30:40.892Z Has data issue: false hasContentIssue false

Inorganic and methane clathrates: Versatility of guest–host compounds for energy harvesting

Published online by Cambridge University Press:  28 August 2015

Lakshmi Krishna*
Affiliation:
Department of Physics, Colorado School of Mines, Golden, CO 80401, USA
Carolyn A. Koh*
Affiliation:
Department of Chemical & Biological Engineering, Colorado School of Mines, Golden, CO 80401, USA
*
a)Address all correspondence to Carolyn A. Koh at ckoh@mines.edu or Lakshmi Krishna at lkrishna@mines.edu
a)Address all correspondence to Carolyn A. Koh at ckoh@mines.edu or Lakshmi Krishna at lkrishna@mines.edu
Get access

Abstract

This review article evaluates the structure–property relations of inorganic clathrates and clathrate hydrates and their potential role in energy harvesting. There is potential cross-fertilization between the two research areas.

Guest–host clathrate compounds exhibit unique structural and physical properties, which lead to their versatile roles in energy applications. Prominent classes of clathrate compounds are gas hydrates and inorganic clathrates. That said, there is limited cross-fertilization between the clathrate hydrate and inorganic clathrate communities, with researchers in the respective fields being less informed on the other field. Yet the structures and unique guest–host interactions in both these compounds are common important features of these clathrates. Common features and procedures can inspire and inform development between the compound classes, which may be important to the technological advancements for the different clathrate materials, e.g., structure characterization techniques and guest–host dynamics in which the “guest” tends to be imprisoned in the host structure, until external forces are applied. Conversely, the diversity in chemical compositions of these two classes of materials leads to the different applications from methane capture and storage to converting waste heat to electricity (thermoelectrics). This article highlights the structural and physical similarities and differences of inorganic and methane clathrates. The most promising state-of-the-art applications of the clathrates are highlighted for harvesting energy from methane (clathrate) hydrate deposits under the ocean and for inorganic clathrates as promising thermoelectric materials.

Type
Review
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Sloan, E.D. and Koh, C.A.: Clathrate Hydrates of Natural Gases (Taylor and Francis, CRC Press, Boca Raton, FL, 2007).CrossRefGoogle Scholar
Beekman, M. and Nolas, G.S.: Inorganic clathrate-II materials of group 14: Synthetic routes and physical properties. J. Mater. Chem. 18, 842851 (2008).Google Scholar
Neiner, D., Okamoto, N.L., Condron, C.L., Ramasse, Q.M., Yu, P., Browning, N.D., and Kauzlarich, S.M.: Hydrogen encapsulation in a silicon clathrate type I structure: Na5.5 (H2)2.15 Si46: Synthesis and characterization. J. Am. Chem. Soc. 129(45), 1385713862 (2007).Google Scholar
Christensen, M., Abrahamsen, A.B., Christensen, N.B., Juranyi, F., Andersen, N.H., Lefmann, K., Andreasson, J., Bahl, C.R., and Iversen, B.B.: Avoided crossing of rattler modes in thermoelectric materials. Nat. Mater. 7(10), 811815 (2008).CrossRefGoogle ScholarPubMed
Krishna, L., Baranowski, L.L., Martinez, A.D., Koh, C.A., Taylor, P.C., Tamboli, A.C., and Toberer, E.S.: Efficient route to phase selective synthesis of type II silicon clathrates with low sodium occupancy. CrystEngComm 16(19), 39403949 (2014).CrossRefGoogle Scholar
Tritt, T.: Advances in Thermoelectric Materials I, Vol. 69 (Academic Press, San Diego, USA, 2000).Google Scholar
Pouchard, M. and Cros, C.: The early development of inorganic clathrates. In The Physics and Chemistry of Inorganic Clathrates, Nolas, G.S. ed.; Springer: Philadelphia; New York, 2014; pp. 133.Google Scholar
Shevelkov, A.V. and Kovnir, K.: Zintl clathrates. In Zintl Phases, Fassler, T.S. ed.; Springer: Germany, 2011; pp. 97142.Google Scholar
Waite, W.F., Santamarina, J.C., Cortes, D.D., Dugan, B., Espinoza, D., Germaine, J., Jang, J., Jung, J., Kneafsey, T.J., and Shin, H.: Physical properties of hydrate‐bearing sediments. Rev. Geophys. 47(4), RG4003 (2009).CrossRefGoogle Scholar
Nolas, G.S.: The Physics and Chemistry of Inorganic Clathrates (Springer, Philadelphia; New York, 2014).CrossRefGoogle Scholar
Shin, K., Kim, Y., Strobel, T.A., Prasad, P., Sugahara, T., Lee, H., Sloan, E.D., Sum, A.K., and Koh, C.A.: Tetra-n-butylammonium borohydride semiclathrate: A hybrid material for hydrogen storage. J. Phys. Chem. A 113(23), 64156418 (2009).Google Scholar
Beekman, M. and Nolas, G.S.: Synthetic approaches to intermetallic clathrates. In The Physics and Chemistry of Inorganic Clathrates, Nolas, G.S. ed.; Springer: Philadelphia; New York, 2014; pp. 6590.CrossRefGoogle Scholar
Mao, W.L., Mao, H-k., Goncharov, A.F., Struzhkin, V.V., Guo, Q., Hu, J., Shu, J., Hemley, R.J., Somayazulu, M., and Zhao, Y.: Hydrogen clusters in clathrate hydrate. Science 297(5590), 22472249 (2002).Google Scholar
Yamanaka, S., Komatsu, M., Tanaka, M., Sawa, H., and Inumaru, K.: High pressure synthesis and structural characterization of the type II clathrate compound Na30.5Si136 encapsulating two sodium atoms in the same silicon polyhedral cages. J. Am. Chem. Soc. 136, 77177725 (2014).CrossRefGoogle ScholarPubMed
Baldwin, B.A., Stevens, J., Howard, J.J., Graue, A., Kvamme, B., Aspenes, E., Ersland, G., Husebø, J., and Zornes, D.R.: Using magnetic resonance imaging to monitor CH4 hydrate formation and spontaneous conversion of CH4 hydrate to CO2 hydrate in porous media. Magn. Reson. Imaging 27(5), 720726 (2009).Google Scholar
Reny, E., Gravereau, P., Cros, C., and Pouchard, M.: Structural Characterization of the NaxSi136 and Na8Si46 silicon clathrates using the Rietveld method. J. Mater. Chem. 8, 2839-2844 (1998).Google Scholar
Langer, T., Dupke, S., Trill, H., Passerini, S., Eckert, H., Pöttgen, R., and Winter, M.: Electrochemical lithiation of silicon clathrate-II. J. Electrochem. Soc. 159(8), A1318A1322 (2012).Google Scholar
Wagner, N.A., Raghavan, R., Zhao, R., Wei, Q., Peng, X., and Chan, C.K.: Electrochemical cycling of sodium‐filled silicon clathrate. ChemElectroChem 1(2), 347353 (2014).CrossRefGoogle Scholar
Li, D., Fang, L., Deng, S., Kang, K., Shen, L., Wei, W., and Ruan, H.: Structural and electronic properties of type-I and type-VIII Ba8Ga16Sn30 clathrates under compression. Phys. B 407(8), 12381243 (2012).Google Scholar
Davy, H.: The Bakerian lecture: On some of the combinations of oxymuriatic gas and oxygene, and on the chemical relations of these principles, to inflammable bodies. Philos. Trans. R. Soc. London 101, 135 (1811).Google Scholar
Hammerschmidt, E.: Formation of gas hydrates in natural gas transmission lines. Ind. Eng. Chem. 26(8), 851855 (1934).Google Scholar
Von Stackelberg, M.: Feste gashydrate. Naturwissenschaften 36, 327333 (1949).Google Scholar
Platteeuw, J. and Van der Waals, J.: Thermodynamic properties of gas hydrates. Mol. Phys. 1(1), 9196 (1958).Google Scholar
Makogon, I.U.r.F. and Cieslewicz, W.: Hydrates of Natural Gas (PennWell Books, Tulsa, Oklahoma, 1981).Google Scholar
Gudmundsson, J., Andersson, V., Levik, O., and Parlaktuna, M.: Hydrate Concept for Capturing Associated Gas. SPE Paper-50598 (Society of Petroleum Engineers, Houston, TX, 1998).Google Scholar
Florusse, L.J., Peters, C.J., Schoonman, J., Hester, K.C., Koh, C.A., Dec, S.F., Marsh, K.N., and Sloan, E.D.: Stable low-pressure hydrogen clusters stored in a binary clathrate hydrate. Science 306(5695), 469471 (2004).Google Scholar
Ripmeester, J.A., John, S.T., Ratcliffe, C.I., and Powell, B.M.: A new clathrate hydrate structure. Nature 325(6100), 135136 (1987).CrossRefGoogle Scholar
Collett, T.S., Fyre, M., Goldberg, D., Hasubo, J., Koh, C.A., Malone, M., Shipp, C., and Torres, M.: Historical Methane Hydrate Projecr Review; Consortium for Ocean Leadership (US Department of Energy, National Energy Technology Laboratory, Washington, DC, 2013).Google Scholar
Kasper, J.S., Hagenmuller, P., Pouchard, M., and Cros, C.: Clathrate structure of silicon Na8Si46 and NaxSi136 (x < 11). Science 150(3704), 17131714 (1965).CrossRefGoogle ScholarPubMed
Menke, H. and von Schnering, H.G.: Die Käfigverbindungen Ge38A8X8mit A= P, As. Sb und X= Cl, Br. Z. Anorg. Allg. Chem. 395(2–3), 223238 (1973).Google Scholar
Kawaji, H., Horie, H-O., Yamanaka, S., and Ishikawa, M.: Superconductivity in the silicon clathrate compound (Na, Ba)xSi46 . Phys. Rev. Lett. 74(8), 1427 (1995).Google Scholar
Nolas, G.S., Cohn, J.L., Slack, G.A., and Schujman, S.B.: Semiconducting Ge clathrates: Promising candidates for thermoelectric applications. Appl. Phys. Lett. 73, 178 (1998).Google Scholar
Gryko, J., McMillan, P.F., Marzke, R.F., Ramachandran, G.K., Patton, D., Deb, S.K., and Sankey, O.F.: Low-density framework form of crystalline silicon with a wide optical band gap. Phys. Rev. B 62(12), R7707 (2000).Google Scholar
Guloy, A.M., Tang, Z., Ramlau, R., Böhme, B., Baitinger, M., and Grin, Y.: Synthesis of the clathrate‐II K8.6(4)Ge136 by oxidation of K4Ge9 in an ionic liquid. Eur. J. Inorg. Chem. 2009(17), 24552458 (2009).Google Scholar
Christensen, M., Johnsen, S., and Iversen, B.B.: Thermoelectric clathrates of type I. Dalton Trans. 39(4), 978992 (2010).Google Scholar
Adams, G.B., O’Keeffe, M., Demkov, A.A., Sankey, O.F., and Huang, Y-M.: Wide-band-gap Si in open fourfold-coordinated clathrate structures. Phys. Rev. B 49(12), 8048 (1994).Google Scholar
Baranowski, L.L., Krishna, L., Martinez, A.D., Raharjo, T., Stevanović, V., Tamboli, A.C., and Toberer, E.S.: Synthesis and optical band gaps of alloyed Si–Ge type II clathrates. J. Mater. Chem. C 2(17), 32313237 (2014).CrossRefGoogle Scholar
Paull, C., Dallimore, S.R., Enciso, G., Green, S., and Koh, C.A.: Realizing the Energy Potential of Methane Hydrate for the United States (NRC, Washington, DC, 2010).Google Scholar
Gudmundsson, J.S. and Borrehaug, A.: Frozen hydrate for transport of natural gas. In 2nd International Conference on Natural Gas Hydrate, Toulouse, France, 2–6 June 1996.Google Scholar
Koh, C.A., Sloan, E.D., Sum, A.K., and Wu, D.T.: Fundamentals and applications of gas hydrates. Annu. Rev. Chem. Biomol. Eng. 2, 237257 (2011).Google Scholar
Eslamimanesh, A., Mohammadi, A.H., Richon, D., Naidoo, P., and Ramjugernath, D.: Application of gas hydrate formation in separation processes: A review of experimental studies. J. Chem. Thermodyn. 46, 6271 (2012).Google Scholar
Park, Y., Kim, D-Y., Lee, J-W., Huh, D-G., Park, K-P., Lee, J., and Lee, H.: Sequestering carbon dioxide into complex structures of naturally occurring gas hydrates. Proc. Natl. Acad. Sci. U. S. A. 103(34), 1269012694 (2006).Google Scholar
Kubota, H., Shimizu, K., Tanaka, Y., and Makita, T.: Thermodynamic properties of R13 (CClF3), R23 (CHF3), R152a (C2H4F2), and propane hydrates for desalination of sea water. J. Chem. Eng. Jpn. 17(4), 423429 (1984).CrossRefGoogle Scholar
Shin, K., Cha, J-H., Seo, Y., and Lee, H.: Focus reviews. Chem. - Asian J. 5, 2234 (2010).CrossRefGoogle Scholar
Stefanoski, S., Beekman, M., and Nolas, G.S.: Inorganic clathrates for thermoelectric applications. In The Physics and Chemistry of Inorganic Clathrates, Nolas, G.S. ed.; Springer: Philadelphia; New York, 2014; pp. 169191.Google Scholar
Martinez, A.D., Krishna, L., Baranowski, L.L., Lusk, M.T., Toberer, E.S., and Tamboli, A.C.: Synthesis of group IV clathrates for photovoltaics. IEEE J. Photovoltaics 3, 13051310 (2013).Google Scholar
Yang, J. and John, S.T.: Silicon clathrates as anode materials for lithium ion batteries? J. Mater. Chem. A 1(26), 77827789 (2013).Google Scholar
Gatti, C., Bertini, L., Blake, N.P., and Iversen, B.B.: Guest–framework interaction in type I inorganic clathrates with promising thermoelectric properties: On the ionic versus neutral nature of the alkaline‐earth metal guest a in A8Ga16Ge30 (A= Sr, Ba). Chem. - Eur. J. 9(18), 45564568 (2003).Google Scholar
Tse, J.S., Ratcliffe, C.I., Powell, B.M., Sears, V.F., and Handa, Y.P.: Rotational and translational motions of trapped methane. Incoherent inelastic neutron scattering of methane hydrate. J. Phys. Chem. A 101(25), 44914495 (1997).Google Scholar
Buch, V., Devlin, J.P., Monreal, I.A., Jagoda-Cwiklik, B., Uras-Aytemiz, N., and Cwiklik, L.C.: Clathrate hydrates with hydrogen-bonding guests. Phys. Chem. Chem. Phys. 11, 1024510265 (2009). doi: 10.1039/B911600C (Perspective).Google Scholar
Kumar, P. and Sathyamurthy, N.: Theoretical studies of host–guest interaction in gas hydrates. J. Phys. Chem. A 115(50), 1427614281 (2011).Google Scholar
Khan, A.: Ab initio studies of (H2O) 28 hexakaidecahedral cluster with Ne, N2, CH4, and C2H6 guest molecules in the cavity. J. Chem. Phys. 116, 66286633 (2002).Google Scholar
Khan, A.: Theoretical studies of CH4 (H2O)(20),(H2O)(21),(H2O)(20), and fused dodecahedral and tetrakaidecahedral structures: How do natural gas hydrates form? J. Chem. Phys. 110(24), 1188411889 (1999).Google Scholar
Udachin, K.A., Ratcliffe, C.I., and Ripmeester, J.A.: Structure, composition, and thermal expansion of CO2 hydrate from single crystal X-ray diffraction measurements. J. Phys. Chem. B 105(19), 42004204 (2001).Google Scholar
Blosser, M. and Nolas, G.: Synthesis of Na8Si46 and Na24Si136 by oxidation of Na4Si4 from ionic liquid decomposition. Mater. Lett. 99, 161163 (2013).Google Scholar
Tse, J., Shpakov, V., Belosludov, V., Trouw, F., Handa, Y., and Press, W.: Coupling of localized guest vibrations with the lattice modes in clathrate hydrates. Europhys. Lett. 54(3), 354 (2001).Google Scholar
Takabatake, T., Suekuni, K., Nakayama, T., and Kaneshita, E.: Phonon-glass electron-crystal thermoelectric clathrates: Experiments and theory. Rev. Mod. Phys. 86(2), 669 (2014).Google Scholar
Yamanaka, S., Enishi, E., Fukuoka, H., and Yasukawa, M.: High-pressure synthesis of a new silicon clathrate superconductor, Ba8Si46 . Inorg. Chem. 39(1), 5658 (2000).Google Scholar
Connétable, D.: Structural and electronic properties of p-doped silicon clathrates. Phys. Rev. B 75(12), 125202 (2007).Google Scholar
Karttunen, A.J. and Fässler, T.F.: Semiconducting clathrates meet gas hydrates: Xe24[Sn136]. Chem. - Eur. J. 20(22), 66936698 (2014).Google Scholar
Queisser, H.J. and Haller, E.E.: Defects in semiconductors: Some fatal, some vital. Science 281(5379), 945950 (1998).Google Scholar
Peters, B., Zimmermann, N.E., Beckham, G.T., Tester, J.W., and Trout, B.L.: Path sampling calculation of methane diffusivity in natural gas hydrates from a water-vacancy assisted mechanism. J. Am. Chem. Soc. 130(51), 1734217350 (2008).Google Scholar
Davidson, D. and Ripmeester, J.: NMR, NQR and dielectric properties of clathrates. Inclusion Compd. 3, 69128 (1984).Google Scholar
Demurov, A., Radhakrishnan, R., and Trout, B.L.: Computations of diffusivities in ice and CO2 clathrate hydrates via molecular dynamics and Monte Carlo simulations. J. Chem. Phys. 116(2), 702709 (2002).Google Scholar
Shi, X., Yang, J., Bai, S., Yang, J., Wang, H., Chi, M., Salvador, J.R., Zhang, W., Chen, L., and Wong-Ng, W.: On the design of high‐efficiency thermoelectric clathrates through a systematic cross‐substitution of framework elements. Adv. Funct. Mater. 20(5), 755763 (2010).CrossRefGoogle Scholar
Krishna, L., Martinez, A.D., Baranowski, L.L., Brawand, N.P., Koh, C.A., Stevanovic, V., Lusk, M.T., Toberer, E.S., and Tamboli, A.C.: Group IV clathrates: Synthesis, optoelectonic properties, and photovoltaic applications. Proc. SPIE 8981, 898108 (2014). doi: 10.1117/12.2040056.Google Scholar
Nistor, L., Van Tendeloo, G., Amelinckx, S., and Cros, C.: Atomic imaging of cage‐like structures of silicon. Phys. Status Solidi A 146(1), 119132 (1994).CrossRefGoogle Scholar
Strobel, T.A., Hester, K.C., Koh, C.A., Sum, A.K., and Sloan, E.D. Jr.: Properties of the clathrates of hydrogen and developments in their applicability for hydrogen storage. Chem. Phys. Lett. 478(4), 97109 (2009).Google Scholar
Grim, R.G., Lafond, P., Barnes, B., Kockelmann, W., Keen, D., Soper, A.K., Hiratuska, M., Yasuoka, K., Koh, C.A., and Sum, A.K.: Observation of interstitial molecular hydrogen in clatharte hydrates. Angew. Chem., Int. Ed. 53, 1071010713 (2014).Google Scholar
Koh, C.A.: Towards a fundamental understanding of natural gas hydrates. Chem. Soc. Rev. 31(3), 157167 (2002).Google Scholar
Takasu, Y., Hasegawa, T., Ogita, N., Udagawa, M., Avila, M.A., Suekuni, K., and Takabatake, T.: Off-center rattling and cage vibration of the carrier-tuned type-I clathrate Ba8Ga16Ge30 studied by Raman scattering. Phys. Rev. B 82(13), 134302 (2010).Google Scholar
He, J., Klug, D.D., Uehara, K., Preston, K.F., Ratcliffe, C.I., and Tse, J.S.: NMR and X-ray spectroscopy of sodium-silicon clathrates. J. Phys. Chem. B 105(17), 34753485 (2001).Google Scholar
Dec, S.F., Bowler, K.E., Stadterman, L.L., Koh, C.A., and Sloan, E.D.: NMR study of methane+ ethane structure I hydrate decomposition. J. Phys. Chem. A 111(20), 42974303 (2007).Google Scholar
Yahiro, H., Yamaji, K., Shiotani, M., Yamanaka, S., and Ishikawa, M.: An ESR study on the thermal electron excitation of a sodium atom incorporated in a silicon clathrate compound. Chem. Phys. Lett. 246(1), 167170 (1995).Google Scholar
Yang, L., Wang, Y., Liu, T., Hu, T., Li, B., Ståhl, K., Chen, S., Li, M., Shen, P., and Lu, G.: Copper position in type-I Ba8Cu4Si42 clathrate. J. Solid State Chem. 178(6), 17731777 (2005).Google Scholar
Ammar, A., Cros, C., Pouchard, M., Jaussaud, N., Bassat, J-M., Villeneuve, G., Duttine, M., Ménétrier, M., and Reny, E.: On the clathrate form of elemental silicon, Si136: Preparation and characterisation of NaxSi136(x→ 0). Solid State Sci. 6(5), 393400 (2004).Google Scholar
Falenty, A., Hansen, T.C., and Kuhs, W.F.: Formation and properties of ice XVI obtained by emptying a type sII clathrate hydrate. Nature 516(7530), 231233 (2014).Google Scholar
Walsh, M.R., Koh, C.A., Sloan, E.D., Sum, A.K., and Wu, D.T.: Microsecond simulations of spontaneous methane hydrate nucleation and growth. Science 326(5956), 10951098 (2009).Google Scholar
Snyder, G.J. and Toberer, E.S.: Complex thermoelectric materials. Nat. Mater. 7(2), 105114 (2008).Google Scholar
LaLonde, A.D., Pei, Y., Wang, H., and Jeffrey Snyder, G.: Lead telluride alloy thermoelectrics. Mater. Today 14(11), 526532 (2011).Google Scholar
Yang, J., Yip, H.L., and Jen, A.K.Y.: Rational design of advanced thermoelectric materials. Adv. Energy Mater. 3(5), 549565 (2013).Google Scholar
Suekuni, K., Yamamoto, S., Avila, M.A., and Takabatake, T.: Universal relation between guest free space and lattice thermal conductivity reduction by anharmonic rattling in type-I clathrates. J. Phys. Soc. Jpn. 77(Suppl. A), 6166 (2008).Google Scholar
Prokofiev, A., Sidorenko, A., Hradil, K., Ikeda, M., Svagera, R., Waas, M., Winkler, H., Neumaier, K., and Paschen, S.: Thermopower enhancement by encapsulating cerium in clathrate cages. Nat. Mater. 12, 10961101 (2013).Google Scholar
Kvenvolden, K.A.: Methane hydrates and global climate. Global Biogeochem. Cycles 2, 221229 (1988).Google Scholar
Koh, C.A., Sum, A.K., and Sloan, E.D.: Gas hydrates: Unlocking the energy from icy cages. J. Appl. Phys. 106(6), 061101 (2009).CrossRefGoogle Scholar
Ruppel, C. and Noserale, D.: Gas Hydrates and Climate Warming—Why a Methane Catastrophe Is Unlikely. Sound Waves (USGS newsletter), cover story (2012).Google Scholar