Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T00:49:20.330Z Has data issue: false hasContentIssue false

Emerging trends in bioenergy harvesters for chronic powered implants

Published online by Cambridge University Press:  22 June 2015

Tushar Sharma*
Affiliation:
Intel Corporation, 5200 NE Elam Young Pkwy, Hillsboro, OR USA 97124
Sahil Naik
Affiliation:
Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX USA 78705
Ashwini Gopal
Affiliation:
Nanoshift LLC, 2000 Powell Street, 530 Emeryville, CA USA 94608
John X.J. Zhang
Affiliation:
Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH USA 03755
*
a)Address all correspondence to Tushar Sharma at tusharsharma@utexas.edu
Get access

Abstract

The widening gap between the short battery life (<8 years) and patients' life expectancy (20 years) is a growing concern for long-term implantable devices and adds to outpatient costs. This gap coupled with significant advancements in circuit, device design, and lowered power consumption (<1 mW) has refueled the interest in implantable energy harvesters.

As the complexity of implantable devices is increasing, the size and power requirements of implantable devices have shrunk by more than double over the past few decades. However, the functionality or lifespan of the devices is often found to be limited due to shortage of power. With more than 50% of the device size being occupied by the battery alone, longevity of such implantable devices has garnered huge concern over the years. Fueled by the demand of additional biosensors coupled to such devices, implantable energy harvesters, capable of harvesting the body's chemical, thermal, or mechanical energy over a long period of time, have gained tremendous popularity. Among these technologies, implantable glucose fuel cells provide a promising method to generate a small yet continuous supply of power. Implantable fuel cells tap into the available free blood glucose to generate electricity. With the trend moving toward the use of semiconductor technologies for glucose-based fuel cells, fabrication of reliable and effective technology is within feasible limits. Realization of such implantable power sources can shift the burden from commonly used lithium-ion batteries by utilizing physiological resources. The present review focuses on recent developments on abiotic glucose fuel cell for bioenergy harvesting.

Type
Review
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bruce, J.: Implantable Medical Devices Market—U.S. Industry Analysis, Size, Share, Trends, Growth And Forecast 2012–2018 (2013) [cited 2014 September 11]; Available from: http://www.academia.edu/7691398/Implantable_Medical_Devices_Market_-_U.S._Industry_Analysis_Size_Share_Trends_Growth_And_Forecast_2012_-_2018.Google Scholar
Asbach, S., Olschewski, M., Faber, T.S., Zehender, M., Bode, C., and Brunner, M.: Mortality in patients with atrial fibrillation has significantly decreased during the last three decades: 35 years of follow-up in 1627 pacemaker patients. Europace 10(4), 391394 (2008).Google Scholar
Drug Delivery Device Market to 2017-Metered Dose Inhalers and Infusion Pumps to be Key Revenue Generators Sepetmber 30, 2011 [cited 2014 September 11]; Available from: http://www.marketresearch.com/GBI-Research-v3759/Drug-Delivery-Device-Metered-Dose-6623023/.Google Scholar
Potkay, J.: Long term, implantable blood pressure monitoring systems. Biomed. Microdevices 10(3), 379392 (2008).Google Scholar
Li, P-Y., Givrad, T.K., Sheybani, R., Holschneider, D.P., Maarek, J.M.I., and Meng, E.: A low power, on demand electrothermal valve for wireless drug delivery applications. Lab Chip 10(1), 101110 (2010).Google Scholar
Salam, M., Sawan, M., and Nguyen, D.: Low-power implantable device for onset detection and subsequent treatment of epileptic seizures: A review. J. Healthc. Eng. 1(2), 169184 (2010).Google Scholar
Sarpeshkar, R., Baker, M., Salthouse, C., Sit, J.J., Turicchia, L., and Zhak, S.: An analog bionic ear processor with zero-crossing detection. In Proceedings of the IEEE International Solid State Circuits Conference (ISSCC), San Francisco, CA, 2005.Google Scholar
Weiland, J.D., Liu, W., and Humayun, M.S.: Retinal prosthesis. Annu. Rev. Biomed. Eng. 7(1), 361401 (2005).Google Scholar
Sanders, G.D., Hlatky, M.A., and Owens, D.K.: Cost-effectiveness of implantable cardioverter–defibrillators. N. Engl. J. Med. 353(14), 14711480 (2005).Google Scholar
Maisel, W.H.: Pacemaker and ICD generator reliability. JAMA, J. Am. Med. Assoc. 295(16), 19291934 (2006).Google Scholar
Huegl, B., Bruns, H.J., Unterberg-Buchwald, C., Grosse, A., Stegemann, B., Lauer, B., and Gasparini, M.: Atrial fibrillation burden during the post-implant period after CRT using device-based diagnostics. J. Cardiovasc. Electrophysiol. 17(8), 813817 (2006).Google Scholar
Sanders, R.S., Paul, P.J., and Prutchi, D.: Implantable cardiac stimulation device with warning system and conductive suture point, Intermedics, Inc., US Patent No. 5609615, 1997.Google Scholar
Helland, J.R: Implantable myocardial stimulation lead with sensors thereon, Pacesetter, Inc., US Patent No. 5423883, 1995.Google Scholar
Stotts, L.J., Paul, P.J., and Prutchi, D.: Implantable cardiac stimulation device with warning system having automatic regulation of stimulation, Intermedics, Inc., US Patent No. 5609614, 1997.Google Scholar
Kassab, G.S., Svendsen, M., Combs, W., Choy, J.S., Berbari, E.J., and Navia, J.A.: A transatrial pericardial access: Lead placement as proof of concept. Am. J. Physiol. Heart Circ. Physiol. 298(1), H287H293 (2010).Google Scholar
Kreysa, G., Sell, D., and Kramer, P.: Bioelectrochemical fuel-cells. Ber. Bunsen-Ges.-Phys. Chem. Chem. Phys. 94(9), 10421045 (1990).Google Scholar
Rao, J.R., Richter, G.J., Von Sturm, F., and Weidlich, E.: Performance of glucose electrodes and characteristics of different biofuel cell constructions. Bioelectrochem. Bioenerg. 3(1), 139150 (1976).Google Scholar
Mele, M.F.L.D., Cardos, M.J., and Videla, H.A.: A biofuel cell as a bioelectrochemical sensor of glucose-oxidation. An. Asoc. Quim. Argent. 67(4), 125138 (1979).Google Scholar
Weidlich, E., Richter, G., Sturm, F.V., and Rao, J.R.: Animal-experiments with bio-galvanic and bio-fuel cells. Biomater., Med. Devices, Artif. Organs 4(3–4), 277306 (1976).Google Scholar
Präuer, H.W., Wirtzfeld, A., Lampadius, M., Himmler, C., and Werber, K.: Lithium-powered cardiac-pacemakers. Med. Klin. 72(44), 18851891 (1977).Google Scholar
Laser, D.J. and Santiago, J.G.: A review of micropumps. J. Micromech. Microeng. 14(6), R35 (2004).Google Scholar
Evans, A.T., Park, J.M., Chiravuri, S., and Gianchandani, Y.B.: A low power, microvalve regulated architecture for drug delivery systems. Biomed. Microdevices 12(1), 159168 (2009).Google Scholar
Tijero, M., Gabriel, G., Caro, J., Altuna, A., Hernández, R., Villa, R., Berganzo, J., Blanco, F.J., Salido, R., and Fernández, L.J.: SU-8 microprobe with microelectrodes for monitoring electrical impedance in living tissues. Biosens. Bioelectron. 24(8), 24102416 (2009).CrossRefGoogle ScholarPubMed
Silveira, P.G., Miller, C.W.T., Mendes, R.F., and Galego, G.N.: Correlation between intrasac pressure measurements of a pressure sensor and an angiographic catheter during endovascular repair of abdominal aortic aneurysm. Clinics 63(1), 5966 (2008).Google Scholar
Reichelt, S., Fiala, J., Werber, A., Förster, K., Heilmann, C., Klemm, R., and Zappe, H.: Development of an implantable pulse oximeter. IEEE Trans. Biomed. Eng. 55(2), 581588 (2008).Google Scholar
Schlierf, R., Horst, U., Ruhl, M., Schmitz-Rode, T., Mokwa, W., and Schnakenberg, U.: A fast telemetric pressure and temperature sensor system for medical applications. J. Micromech. Microeng. 17(7), S98S102 (2007).Google Scholar
Cong, P., Young, D.J., and Ko, W.H.: Novel long-term implantable blood pressure monitoring system. In Proceedings of the IEEE Sensors 2004, Vols. 13, Rocha, D., Sarro, P.M., and Vellekoop, M.J. eds.; IEEE: New York, 2004; pp. 13591362.Google Scholar
Arzbaecher, R., Song, Z., Burke, M., and Jenkins, J.: Subcutaneous sensor for cardiac arrest or acute ischemia. Circulation 110(17), 1097 (2004).Google Scholar
Kjellström, B., Linde, C., Bennet, T., Ohlsson, Å, and Ryden, L.: Six years follow-up of an implanted SvO(2) sensor in the right ventricle. Eur. J. Heart Failure 6(5), 627634 (2004).Google Scholar
Chau, H.L. and Wise, K.D.: An ultraminiature solid-state pressure sensor for a cardiovascular catheter. IEEE Trans. Electron Devices 35(12), 23552362 (1988).Google Scholar
Najafi, N. and Ludomirsky, A.: Initial animal studies of a wireless, batteryless, MEMS implant for cardiovascular applications. Biomed. Microdevices 6(1), 6165 (2004).Google Scholar
Lanmüller, H., Bijak, M., Mayr, W., Rafolt, D., Sauermann, S., and Thoma, H.: Useful applications and limits of battery powered implants in functional electrical stimulations. Artif. Organs 21, 210212 (1997).Google Scholar
Shill, H.A.: Reliability in deep brain stimulation. IEEE Trans. Device Mater. Reliab. 5(3), 445448 (2005).Google Scholar
Signorelli, R.: High energy and power density nanotube-enhanced ultracapacitor design, modeling, testing, and predicted performance, MIT, Department of Electrical Engineering and Computer Science, 2009.Google Scholar
Parsonnet, V. and Manhardt, M.: Permanent pacing of the heart: 1952 to 1976. Am. J. Cardiol. 39(2), 250256 (1977).Google Scholar
Parsonnet, V., Myers, G.H., Gilbert, L., and Zucker, I.R.: Clinical experience with nuclear pacemakers. Surgery 78(6), 776786 (1975).Google Scholar
Laurens, P.: Nuclear-powered pacemakers: An eight-year clinical experience. Pacing Clin. Electrophysiol. 2(3), 356360 (1979).Google Scholar
Foster, K. and Adair, E.: Modeling thermal responses in human subjects following extended exposure to radiofrequency energy. Biomed. Eng. Online 3(4), 17 (2004).Google Scholar
Tang, Q., Tummala, N., Gupta, S.K.S., and Schwiebert, L.: Communication scheduling to minimize thermal effects of implanted biosensor networks in homogeneous tissue. IEEE Trans. Biomed. Eng. 52(7), 12851294 (2005).CrossRefGoogle ScholarPubMed
Goto, H., Sugiura, T., Harada, Y., and Kazui, T.: Feasibility of using the automatic generating system for quartz watches as a leadless pacemaker power source. Med. Biol. Eng. Comput. 37(3), 377380 (1999).Google Scholar
Starek, P., White, D.L., and Lillehei, C.W.: Intracardiac pressure changes utilized to energize a piezoelectric powered cardiac pacemaker. Trans. - Am. Soc. Artif. Intern. Organs 16, 180182 (1970).Google Scholar
Roberts, B.: Capturing grid power. IEEE Power Energ. Mag. 7(4), 3241 (2009).Google Scholar
Thounthong, P., Chunkag, V., Sethakul, P., Davat, B., and Hinaje, M.: Comparative study of fuel-cell vehicle hybridization with battery or supercapacitor storage device. IEEE Trans. Veh. Technol. 58(8), 38923904 (2009).Google Scholar
Chandrakasan, A.P., Verma, N., and Daly, D.C.: Ultralow-power electronics for biomedical applications. Annu. Rev. Biomed. Eng. 10, 247274 (2008).Google Scholar
Holmes, C.F.: Electrochemical power sources and the treatment of human illness. J. Electrochem. Soc. Interface 12, 2629 (2003).Google Scholar
Linden, D. and Reddy, T.B.: Handbook of Batteries, 3rd ed. (McGraw-Hill, New York, 2002).Google Scholar
Schuder, J.: Powering an artificial Heart: Birth of the inductively coupled-radio frequency system in 1960. Artif. Organs 26(11), 909915 (2002).Google Scholar
De Vel, O.Y.: Controlled transcutaneous powering of a chronically implanted telemetry device. Biotelemetry and Patient Monitoring, 6(4), 176185 (1978).Google Scholar
Smith, B., Tang, Z., Johnson, M.W., Pourmehdi, S., Gazdik, M.M., Buckett, J.R., and Peckham, P.H.: An externally powered, multichannel, implantable stimulator-telemeter for control of paralyzed muscle. IEEE Trans. Biomed. Eng. 45(4), 499508 (1998).Google Scholar
Suzuki, S.N., Katane, T., and Saito, O.: Fundamental study of an electric power transmission system for implanted medical devices using magnetic and ultrasonic energy. J. Artif. Organs 6(2), 145148 (2003).Google Scholar
Goto, K., Nakagawa, T., Nakamura, O., and Kaata, S.: An implantable power supply with an optically rechargeable lithium battery. IEEE Trans. Biomed. Eng. 48(7), 830833 (2001).Google Scholar
Yakovlev, A., Kim, S., and Poon, A.: Implantable biomedical devices: Wireless powering and communication. IEEE Comm. Mag. 50(4), 152159 (2012).Google Scholar
Tang, Q., Tummala, N., Gupta, S.K.S., and Schwiebert, L.: Communication scheduling to minimize thermal effects of implanted biosensor networks in homogeneous tissue. IEEE Trans. Biomed. Eng. 52(7), 12851294 (2005).Google Scholar
Watkins, C., Shen, B., and Venkatasubramanian, R.: Low-grade-heat energy harvesting using superlattice thermoelectrics for applications in implantable medical devices and sensors. In IEEE 24th International Conference on Thermoelectrics, Clemson, SC, 2005; pp. 265267.Google Scholar
Goto, H., Sugiura, T., Harada, Y., and Kazui, T.: Feasibility of using the automatic generating system for quartz watches as a leadless peacemaker power source. Med. Biol. Eng. Comput. 37(3), 377380 (1999).Google Scholar
Kaster, R.L., Lillehei, C.W., and Starek, P.J.: The Lillehei-Kaster pivoting disc aortic prosthesis and a comparative study of its pulsatile flow characteristics with four other prostheses. Trans. - Am. Soc. Artif. Intern. Organs 16(1), 233243 (1970).Google Scholar
Wang, Z.L. and Song, J.: Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312(5771), 242246 (2006).Google Scholar
Desai, A.V. and Haque, M.A.: Mechanical properties of ZnO nanowires. Sens. Actuators, A 134(1), 169176 (2007).Google Scholar
Fang, F., Zhang, M.Z., and Yang, W.: Strain rate mediated microstructure evolution for extruded poly(vinylidene fluoride) polymer films under uniaxial tension. J. Appl. Polym. Sci. 103(3), 17861790 (2007).Google Scholar
Nalwa, H.S. ed.: Ferroelectric Polymers: Chemistry, Physics and Applications (Marcel Dekker, New York, 1995).Google Scholar
Agren, M.S.: Influence of 2 vehicles for zinc-oxide on zinc-absorption through intact skin and wounds. Acta Derm.-Venereol. 71(2), 153156 (1991).Google Scholar
Wang, Z.L. and Song, J.: Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312(5771), 242246 (2006).Google Scholar
Willner, I.: Biomaterials for sensors, fuel cells, and circuitry. Science 298(5602), 24072408 (2002).Google Scholar
Bruck, S.D. and Mueller, E.P.: Materials aspects of implantable cardiac-pacemaker leads. Med. Prog. Technol. 13(3), 149160 (1988).Google Scholar
Olsen, W.: Ph.D. Medtronic. Personal communication.Google Scholar
Ramsay, M.J. and Clark, W.W.: Piezoelectric energy harvesting for bio MEMS applications. Smart Struct. Mater.Ind. 4322, 429438 (2001).Google Scholar
Fourie, D.: Shoe-mounted PVDF piezoelectric transducer for energy harvesting. MIT URJ 19, (2010).Google Scholar
Avraham, R.: The Circulatory System (Chelsea House Publishers, Philadelphia, PA, 2000).Google Scholar
Hausler, E. and Stein, L.: Implantable physiological power supply with PVDF film. Ferroelectrics 60, 277282 (1984).Google Scholar
Hausler, E. and Stein, L.: Hydromechanical and physiological mechanical-to-electrical power converter with pvdf film. Ferroelectrics 75(3), 363369 (1987).Google Scholar
Starner, T.: Human-powered wearable computing. IBM Syst. J. 35(3–4), 618629 (1996).Google Scholar
Lovinger, A.J.: Ferroelectric polymers. Science 220(4602), 11151121 (1983).Google Scholar
Chang, C.E., Chang, C., Tran, V.H., Wang, J., Fuh, Y.K., and Lin, L.: Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett. 10(2), 726731 (2010).Google Scholar
Turner, A.P.F., Aston, W.J., Higgins, I.J., Davis, G., and Hill, H.A.O.: Applied aspects of bioelectrochemistry: Fuel-cells, sensors, and bioorganic synthesis. Biotechnology and Bioengineering 12, 401412 (1982).Google Scholar
Akiba, T.H.P.B., Bennetto, H.P., Stirling, J.L., and Tanaka, K.: Electricity production from alkalophilic organisms. Biotechnol. Lett. 9(9), 611616 (1987).Google Scholar
Katz, E., Buckmann, A.F., and Willner, I.: Self-powered enzyme-based biosensors. J. Am. Chem. Soc. 123(43), 1075210753 (2001).Google Scholar
Katz, E. and Willner, I.: A biofuel cell with electrochemically switchable and tunable power output. J. Am. Chem. Soc. 125(22), 68036813 (2003).Google Scholar
Barton, S.C. and Atanassov, P.: Enzymatic biofuel cells for implantable and micro-scale devices. Abstr. Pap. Am. Chem. Soc. 228, 004-FUEL (2004).Google Scholar
Davis, F. and Higson, S.P.: Biofuel cells—recent advances and applications. Biosens. Bioelectron. 22(7), 12241235 (2007).Google Scholar
Stolarczyk, K., Kizling, M., Majdecka, D., Zelechowska, K., Biernat, J.F., Rogalski, J., and Bilewicz, R.: Biobatteries and biofuel cells with biphenylated carbon nanotubes. J. Power Sources 249, 263269 (2014).Google Scholar
Miyake, T., Haneda, K., Nagai, N., Yatagawa, Y., Onami, H., Yoshino, S., Abe, T., and Nishizawa, M.: Enzymatic biofuel cells designed for direct power generation from biofluids in living organisms. Energy Environ. Sci. 4, 50085012 (2011).Google Scholar
Falk, M., Andoralov, V., Blum, Z., Sotres, J., Suyatin, D.B., Ruzgas, T., Arnebrant, T., and Shleev, S.: Biofuel cell as a power source for electronic contact lenses. Biosensors and Bioelectronics 37(1), 3845 (2012).Google Scholar
Halamkova, L., Halámek, J., Bocharova, V., Szczupak, A., Alfonta, L., and Katz, E.: Implanted biofuel cell operating in a living snail. J. Am. Chem. Soc. 134, 50405043 (2012).Google Scholar
Szczupak, A., Halámek, J., Halamkova, L., Bocharova, V., Alfonta, L., and Katz, E.: Living battery–biofuel cells operating in vivo in clams. Energy Environ. Sci. 5, 88918895 (2012).Google Scholar
Magnus Falk, C.W.N.V., Babanova, S., Atanassov, P., and Shleev, S., Biofuel cells for biomedical Applications: Colonizing the animal kingdom. ChemPhysChem 14, 20452058 (2013).Google Scholar
Rao, J.R.: Bioelectrochemistry. I. Biological Redox Reactions, Milazzo, M.B.G. ed.; Plenum Press: New York, 1983; pp. 283335.Google Scholar
Cosnier, S., Le Goff, A., and Holzinger, M.: Towards glucose biofuel cells implanted in human body for powering artificial organs: Review. Electrochem. Commun. 38, 1923 (2013).Google Scholar
Palmore, G.T.R., Bertschy, H., Bergens, S.H., and Whitesides, G.M.: A methanol/dioxygen biofuel cell that uses NAD(+)-dependent dehydrogenases as catalysts: Application of an electro-enzymatic method to regenerate nicotinamide adenine dinucleotide at low overpotentials. J. Electroanal. Chem. 443(1), 155161 (1998).Google Scholar
Palmore, G.T.R. and Kim, H.H.: Electro-enzymatic reduction of dioxygen to water in the cathode compartment of a biofuel cell. J. Electroanal. Chem. 464(1), 110117 (1999).Google Scholar
Katz, E., Filanovsky, B., and Willner, I.: A biofuel cell based on two immiscible solvents and glucose oxidase and microperoxidase-11 monolayer-functionalized electrodes. New J. Chem. 23(5), 481487 (1999).Google Scholar
Katz, E., Lioubashevski, O., and Willner, I.: Magnetic field effects on bioelectrocatalytic reactions of surface-confined enzyme systems: Enhanced performance of biofuel cells. J. Am. Chem. Soc. 127(11), 39793988 (2005).Google Scholar
Katz, E., Sheeney-Haj-Ichia, L., and Willner, I.: Electrical contacting of glucose oxidase in a redox-active rotaxane configuration. Angew. Chem., Int. Ed. 43(25), 32923300 (2004).Google Scholar
Katz, E., Willner, I., and Kotlyar, A.B.: A non-compartmentalized glucose vertical bar O-2 biofuel cell by bioengineered electrode surfaces. J. Electroanal. Chem. 479(1), 6468 (1999).Google Scholar
Willner, B., Katz, E., and Willner, I.: Electrical contacting of redox proteins by nanotechnological means. Curr. Opin. Biotechnol. 17(6), 589596 (2006).Google Scholar
Willner, I., Arad, G., and Katz, E.: A biofuel cell based on pyrroloquinoline quinone and microperoxidase-1 monolayer-functionalized electrodes. Bioelectrochem. Bioenerg. 44(2), 209214 (1998).Google Scholar
Willner, I., Baron, R., and Willner, B.: Integrated nanoparticle-biomolecule systems for biosensing and bioelectronics. Biosens. Bioelectron. 22(9–10), 18411852 (2007).Google Scholar
Willner, I., Katz, E., Patolsky, F., and Buckmann, A.: Biofuel cell based on glucose oxidase and microperoxidase-11 monolayer-fundionalized electrodes. J. Chem. Soc., Perkin Trans. 2(8), 18171822 (1998).Google Scholar
Willner, I., Yan, Y.M., Willner, B., and Tel-Vered, R.: Integrated enzyme-based biofuel cells-a review. Fuel Cells 9(1), 724 (2009).Google Scholar
Heller, A.: Miniature biofuel cells. Phys. Chem. Chem. Phys. 6(2), 209216 (2004).Google Scholar
Heller, A.: Electron-conducting redox hydrogels: Design, characteristics and synthesis. Curr. Opin. Chem. Biol. 10(6), 664672 (2006).Google Scholar
Heller, A.: Potentially implantable miniature batteries. Anal. Bioanal. Chem. 385(3), 469473 (2006).CrossRefGoogle ScholarPubMed
Kanwal, A., Wang, S.C., Ying, Y., Cohen, R., Lakshmanan, S., Patlolla, A., Iqbal, Z., Thomas, G.A., and Farrow, R.C.: Substantial power density from a discrete nano-scalable biofuel cell. Electrochem. Commun. 39, 3740 (2014).Google Scholar
Sharma, T.: Nanoporous silica as membrane for implantable ultra-thin biofuel cells. In Power MEMS 2009, Washington DC, 2009.Google Scholar
Akers, N.L., Moore, C.M., and Minteer, S.D.: Development of alcohol/O2 biofuel cells using salt-extracted tetrabutylammonium bromide/Nafion membranes to immobilize dehydrogenase enzymes. Electrochim. Acta 50(12), 25212525 (2005).Google Scholar
Mano, N., Mao, F., Shin, W., Chen, T., and Heller, A.: A miniature biofuel cell operating at 0.78 V. Chem. Commun. 9(4), 518519 (2003).Google Scholar
Liu, H. and Logan, B.E.: Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ. Sci. Technol. 38(14), 40404046 (2004).Google Scholar
Sharma, T., Reddy, A.L.M., Chandra, T.S., and Ramaprabhu, S.: Development of carbon nanotubes and nanofluids based microbial fuel cell. Int. J. Hydrogen Energy 33(22), 67496754 (2008).Google Scholar
Rao, J.R., Richter, G., Von, S.F., and Weidlich, E.: Biological fuel cells for implanted electronic devices. Ber. Bunsenges. Phys. Chem. (Copyright (C) 2011 American Chemical Society (ACS). All Rights Reserved.), 77, 787790 (1973).Google Scholar
Kerzenmacher, S., Ducrée, J., Zengerle, R., and Von Stetten, F.: An abiotically catalyzed glucose fuel cell for powering medical implants: Reconstructed manufacturing protocol and analysis of performance. J. Power Sources 182(1), 6675 (2008).Google Scholar
Kloke, A., Kerzenmacher, S., Zengerle, R., and von Stetten, F.: Electrodeposited thin-layer electrodes for the use in potentially implantable glucose fuel cells. In Transducers. 2009, Denver, CO, USA, 2009; pp. 537540.Google Scholar
Ghaffari, S., Asgarpour, A., Mousavi, R., and Salehieh, M.: Fabrication and simulation of implantable glucose bio fuel cell with gold catalyst. In IEEE International Symposium on Medical Measurements and Applications Proceedings (MeMeA), 2013, IEEE: 2013; pp. 6366.Google Scholar
Oncescu, V. and Erickson, D.: A microfabricated low cost enzyme-free glucose fuel cell for powering low-power implantable devices. J. Power Sources 196(22), 91699175 (2011).Google Scholar
Kerzenmacher, S., Kräling, U., Metz, T., Zengerle, R., and Von Stetten, F.: A potentially implantable glucose fuel cell with Raney-platinum film electrodes for improved hydrolytic and oxidative stability. J. Power Sources 196(3), 12641272 (2011).Google Scholar
Sharma, T., Hu, Y., Stoller, M., Feldman, M., Ruoff, R.S., Ferrari, M., and Zhang, X.: Mesoporous silica as a membrane for ultra-thin implantable direct glucose fuel cells. Lab Chip 11(14), 24602465 (2011).Google Scholar
Rapoport, B.I., Kedzierski, J.T., and Sarpeshkar, R.: A glucose fuel cell for implantable brain–machine interfaces. PLoS One 7(6), e38436 (2012).Google Scholar
Ishii, S.I., Watanabe, K., Yabuki, S., Logan, B.E., and Sekiguchi, Y.: Comparison of electrode reduction activities of Geobacter sulfurreducens and an enriched consortium in an air-cathode microbial fuel cell. Appl. Environ. Microbiol. 74(23), 73487355 (2008).Google Scholar
Logan, B.E.: Exoelectrogenic bacteria that power microbial fuel cells. Nat. Rev. Microbiol. 7(5), 375381 (2009).Google Scholar
Alferov, S.V.: Biofuel cell anode based on the Gluconobacter oxydans bacteria cells and 2,6-dichlorophenolindophenol as an electron transport mediator. Russ. J. Electrochem. 42(4), 403404 (2006).Google Scholar
Dumas, C., Basseguy, R., and Bergel, A.: Electrochemical activity of Geobacter sulfurreducens biofilms on stainless steel anodes. Electrochim. Acta 53(16), 52355241 (2008).Google Scholar
Ringeisen, B.R., Henderson, E., Wu, P.K., Pieetron, J., Ray, R., Little, B., and Jones-Meehan, J.M.: High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10. Environ. Sci. Technol. 40(8), 26292634 (2006).Google Scholar
Trinh, N.T., Park, J.H., and Kim, B.W.: Increased generation of electricity in a microbial fuel cell using Geobacter sulfurreducens. Korean J. Chem. Eng. 26(3), 748753 (2009).Google Scholar
Vostiar, I., Ferapontova, E.E., and Gorton, L.: Electrical "wiring" of viable Gluconobacter oxydans cells with a flexible osmium-redox polyelectrolyte. Electrochem. Commun. 6(7), 621626 (2004).Google Scholar
Wang, Y.F., Tsujimura, S., Cheng, S.S., and Kano, K.: Self-excreted mediator from Escherichia coli K-12 for electron transfer to carbon electrodes. Appl. Microbiol. Biotechnol. 76(6), 14391446 (2007).Google Scholar
Birry, L., Mehta, P., Jaouen, F., Dodelet, J.P., Guiot, S.R., and Tartakovsky, B.: Application of iron-based cathode catalysts in a microbial fuel cell. Electrochim. Acta 56(3), 15051511 (2011).Google Scholar
Bearinger, J.P., Dugan, L.C., Wu, L., Hill, H., Christian, A.T., and Hubbell, J.A.: Chemical tethering of motile bacteria to silicon surfaces. BioTechniques 46(3), 209 (2009).Google Scholar
Deng, L.: A biofuel cell with enhanced performance by multilayer biocatalyst immobilized on highly ordered macroporous electrode. Biosens. Bioelectron. 24(2), 329333 (2008).Google Scholar
Finkelstein, D.A., Tender, L.M., and Zeikus, J.G.: Effect of electrode potential on electrode-reducing microbiota. Environ. Sci. Technol. 40(22), 69906995 (2006).Google Scholar
Liu, J.L., Lowy, D.A., Baumann, R.G., and Tender, L.M.: Influence of anode pretreatment on its microbial colonization. J. Appl. Microbiol. 102(1), 177183 (2007).Google Scholar
Mohan, S.V., Raghavulu, S.V., and Sarma, P.N.: Influence of anodic biofilm growth on bioelectricity production in single chambered mediatorless microbial fuel cell using mixed anaerobic consortia. Biosens. Bioelectron. 24(1), 4147 (2008).Google Scholar
Barrière, F., Ferry, Y., Rochefort, D., and Leech, D.: Targetting redox polymers as mediators for laccase oxygen reduction in a membrane-less biofuel cell. Electrochem. Commun. 6(3), 237241 (2004).Google Scholar
Choi, Y., Wang, G., Nayfeh, M.H., and Yau, S.T.: Electro-oxidation of organic fuels catalyzed by ultrasmall silicon nanoparticles. Appl. Phys. Lett. 93(16), 164103 (2008).Google Scholar
Rabaey, K. and Verstraete, W.: Microbial fuel cells: Novel biotechnology for energy generation. Trends Biotechnol. 23(6), 291298 (2005).Google Scholar
Sharma, T., Reddy, A., Chandra, T.S., and Ramaprabhu, S.: High power density from Pt thin film electrodes based microbial fuel cell. J. Nanosci. Nanotechnol. 8(8), 41324134 (2008).Google Scholar
Wang, H-Y., Bernarda, A., Huang, C.Y., Lee, D.J., and Chang, J.S.: Micro-sized microbial fuel cell: A mini-review. Bioresour. Technol. 102(1), 235243 (2011).Google Scholar
Aelterman, P., Rabaey, K., Pham, H.T., Boon, N., and Verstraete, W.: Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. Environ. Sci. Technol. 40(10), 33883394 (2006).Google Scholar
He, Z., Wagner, N., Minteer, S.D., and Angenent, L.T.: An upflow microbial fuel cell with an interior cathode: Assessment of the internal resistance by impedance spectroscopy. Environ. Sci. Technol. 40(17), 52125217 (2006).Google Scholar
Hu, Z.Q.: Electricity generation by a baffle-chamber membraneless microbial fuel cell. J. Power Sources 179(1), 2733 (2008).Google Scholar
Pant, D., Van Bogaert, G., Diels, L., and Vanbroekhoven, K.: A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresour. Technol. 101(6), 15331543 (2010).Google Scholar
Fernández, J.L., Mano, N., Heller, A., and Bard, A.J.: Optimization of "wired" enzyme O2-electroreduction catalyst compositions by scanning electrochemical microscopy. Angew. Chem., Int. Ed. 43(46), 63556357 (2004).Google Scholar
Mano, N.: A miniature membrane-less biofuel cell operating at+0.60 V under physiological conditions. Abstr. Pap. Am. Chem. Soc. 230, U1661 (2005).Google Scholar
Minteer, S.D., Liaw, B.Y., and Cooney, M.J.: Enzyme-based biofuel cells. Curr. Opin. Biotechnol. 18(3), 228234 (2007).Google Scholar
Kerzenmacher, S., Ducrée, J., Zengerle, R., and Von Stetten, F.: Energy harvesting by implantable abiotically catalyzed glucose fuel cells. J. Power Sources 182(1), 117 (2008).Google Scholar
Kloke, A., Biller, B., Kerzenmacher, S., Kräling, U., Zengerle, R., and von Stetten, F.: A single layer biofuel cell as potential coating for implantable low power devices. In Eurosensors Proceedings, Dresden, Germany, 2008.Google Scholar
von Stetten, F., Kerzenmacher, S., Sumbharaju, R., Zengerle, R., and Ducrée, J.: Biofuel cells as micro power generators for implantable devices. In Proceedings of the Eurosensors XX, Göteborg, Sweden, 2006.Google Scholar
Kerzenmacher, S., Ducree, J., Zengerle, R., and von Stetten, F: A novel fabrication route yielding self-supporting porous platinum anodes for implantable glucose fuel cells. In Proceedings of the PowerMEMS, Freiburg, Germany, 2007.Google Scholar
Kerzenmacher, S., Sumbharaju, R., Ducree, J., Zengerle, R., and von Stetten, F.: A surface mountable glucose fuel cell for medical implants. In Transducers and Eurosensors 2007, Lyon, France, 2007.Google Scholar
Kerzenmacher, S., Kräling, U., Schroeder, M., Brämer, R., Zengerle, R., and von Stetten, F.: Raney-platinum film electrodes for potentially implantable glucose fuel cells. Part 2: Glucose-tolerant oxygen reduction cathodes. J. Power Sources 195(19), 65246531 (2010).Google Scholar
Kerzenmacher, S., Mutschler, K., Kräling, U., Baumer, H., Ducrée, J., Zengerle, R., and von Stetten, F.: A complete testing environment for the automated parallel performance characterization of biofuel cells: Design, validation, and application. J. Appl. Electrochem. 39(9), 14771485 (2009).Google Scholar
von Stetten, F., Kerzenmacher, S., Lorenz, A., Chokkalingam, V., Miyakawa, N., Zengerle, R., and Ducree, J.: A one-compartment, direct glucose fuel cell for powering long-term medical implants. In MEMS 2006, IEEE: Istanbul, Turkey, 2006; pp. 934937.Google Scholar
Oliveira, L.C., Silva, C.N., Yoshida, M.I., and Lago, R.M.: The effect of H2 treatment on the activity of activated carbon for the oxidation of organic contaminants in water and the H2O2 decomposition. Carbon 42(11), 22792284 (2004).Google Scholar
Kerzenmacher, S., Kräling, U., Ducrée, J., Zengerle, R., and von Stetten, F.: A binder-less glucose fuel cell with improved chemical stability intended as power supply for medical implants. In 4th European Conference of the International Federation for Medical and Biological Engineering, Springer: Antwerp, Belgium, 2009; pp. 23692383.Google Scholar
Rao, J.R. and Richter, G.: Implantable bioelectrochemical power sources. Naturwissenschaften 61(5), 200206 (1974).Google Scholar
Ivanov, I., Vidaković, T.R., and Sundmacher, K.: Glucose electrooxidation for biofuel cell applications. Chem. Biochem. Eng. 23(1), 7786 (2009).Google Scholar
Rao, J.R., Richter, G.J., Luft, G., and von Sturm, P.: Electrochemical behavior of amino-acids and their influence on anodic-oxidation of glucose in neutral media. Biomater., Med. Devices, Artif. Organs 6(2), 127149 (1978).Google Scholar
Oncescu, V. and Erickson, D.: High volumetric power density, non-enzymatic, glucose fuel cells. Sci. Rep. 3, 16 (2013).Google Scholar
Chen, D., Sharma, T., Chen, Y., Fu, X., and Zhang, J.X.: Gold nanoparticles doped flexible PVDF-TrFE energy harvester. In 8th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), 2013, IEEE: Suzhou, China, 2013; pp. 669672.Google Scholar