Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-13T20:16:35.910Z Has data issue: false hasContentIssue false

Yttria-stabilized barium zirconate surface reactivity at elevated temperatures

Published online by Cambridge University Press:  16 June 2020

Märtha M. Welander
Affiliation:
Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT59715, USA
Daniel J. Goettlich
Affiliation:
Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT59715, USA Montana Materials Science Program, Montana State University, Bozeman, MT59715, USA
Tanner J. Henning
Affiliation:
Montana Materials Science Program, Montana State University, Bozeman, MT59715, USA
Robert A. Walker*
Affiliation:
Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT59715, USA Montana Materials Science Program, Montana State University, Bozeman, MT59715, USA
*
Address all correspondence to Robert A. Walker at rawalker@montana.edu
Get access

Abstract

Material changes in yttrium-doped barium zirconate, BaZr0.8Y0.2O3–x, were studied using in situ Raman spectroscopy and ex situ x-ray photoelectron spectroscopy analysis. During in situ Raman analysis, samples were heated to temperatures of 300–600 °C and exposed to both dry and humidified H2 atmospheres. At the lower temperatures (300–450 °C), a new vibrational peak appears in the Raman spectra during exposure to humidified H2. The appearance of this feature is reversible, dependent on previous sample history, and possibly results from new, secondary phase formation or lattice distortion.

Type
Research Letters
Copyright
Copyright © Materials Research Society, 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Fabbri, E., Bi, L., Pergolesi, D., and Traversa, E.: Towards the next generation of solid oxide fuel cells operating below 600°C with chemically stable proton-conducting electrolytes. Adv. Mater. 24, 195208 (2012).CrossRefGoogle ScholarPubMed
Duan, C., Kee, R.J., Zhu, H., Karakaya, C., Chen, Y., Ricote, S., Jarry, A., Crumlin, E.J., Hook, D., Braun, R., Sullivan, N.P., and O'Hayre, R.: Highly durable, coking and sulfur tolerant, fuel-flexible protonic ceramic fuel cells. Nature 557, 217222 (2018).CrossRefGoogle ScholarPubMed
Yun, D.S., Kim, J., Kim, S.-J., Lee, J.-H., Kim, J.-N., Yoon, H.C., Yu, J.H., Kwak, M., Yoon, H., Cho, Y., and Yoo, C.-Y.: Structural and electrochemical properties of dense yttria-doped barium zirconate prepared by solid-state reactive sintering. Energies 11, 3083 (2018).CrossRefGoogle Scholar
He, B., Ding, D., Ling, Y., Zhao, L., and Cheng, J.: Fabrication and evaluation of stable micro tubular solid oxide fuel cells with BZCY-BZY Bi-layer proton conducting electrolytes. Int. J. Hydrog. Energy 39, 1908719092 (2014).CrossRefGoogle Scholar
Bae, K., Jang, D.Y., Choi, H.J., Kim, D., Hong, J., Kim, B.-K., Lee, J.-H., Son, J.-W., and Shim, J.H.: Demonstrating the potential of yttrium-doped barium zirconate electrolyte for high-performance fuel cells. Nat. Commun. 8, 19 (2017).CrossRefGoogle ScholarPubMed
Wang, R., Lau, G., Ding, D., Zhu, T., and Tucker, M.C.: Approaches for co-sintering metal-supported proton-conducting solid oxide cells with Ba(Zr,Ce,Y,Yb)O3-δ electrolyte. Int. J. Hydrog. Energy. 44, 1376813776 (2019).CrossRefGoogle Scholar
Lefebvre-Joud, F., Gauthier, G., and Mougin, J.: Current status of proton-conducting solid oxide fuel cells development. J. Appl. Electrochem. 39, 535543 (2009).CrossRefGoogle Scholar
Duan, C., Tong, J., Shang, M., Nikodemski, S., Sanders, M., Ricote, S., Almansoori, A., and O'Hayre, R.: Readily processed protonic ceramic fuel cells with high performance at low temperatures. Science 349, 13211326 (2015).CrossRefGoogle ScholarPubMed
Chien, R.R., Tu, C.-S., Schmidt, V.H., Lee, S.-C., and Huang, C.-C.: Synthesis and characterization of proton-conducting Ba(Zr0.8−xCexY0.2)O2.9 ceramics. Solid State Ion. 181, 12511257 (2010).CrossRefGoogle Scholar
Dubois, A., Ricote, S., and Braun, R.J.: Comparing the expected stack cost of next generation intermediate temperature protonic ceramic fuel cells with solid oxide fuel cell technology. ECS Trans. 78, 19631972 (2017).CrossRefGoogle Scholar
Patki, N.S., Way, J.D., and Ricote, S.: High performance fuel electrodes fabricated by electroless plating of copper on BaZr0.8Ce0.1Y0.1O3-δ proton-conducting ceramic. J. Power Sources 365, 399407 (2017).CrossRefGoogle Scholar
Slodczyk, A., Zaafrani, O., Sharp, M.D., Kilner, J.A., Dabrowski, B., Lacroix, O., and Colomban, P.: Testing the chemical/structural stability of proton conducting perovskite ceramic membranes by in situ/ex situ autoclave raman microscopy. Membranes 3, 311330 (2013).CrossRefGoogle ScholarPubMed
Giannici, F., Shirpour, M., Longo, A., Martorana, A., Merkle, R., and Maier, J.: Long-range and short-range structure of proton-conducting Y:BaZrO3. Chem. Mater. 23, 29943002 (2011).CrossRefGoogle Scholar
Medvedev, D., Lyagaeva, J., Plaksin, S., Demin, A., and Tsiakaras, P.: Sulfur and carbon tolerance of BaCeO3–BaZrO3 proton-conducting materials. J. Power Sources 273, 716723 (2015).CrossRefGoogle Scholar
Yoo, C.-Y., Yun, D.S., Joo, J.H., and Yu, J.H.: The effects of no addition on the structure and transport properties of proton conducting BaZr0.8Y0.2O3−δ. J. Alloys Compd. 621, 263267 (2015).CrossRefGoogle Scholar
Kubicek, M., Cai, Z., Ma, W., Yildiz, B., Hutter, H., and Fleig, J.: Tensile lattice strain accelerates oxygen surface exchange and diffusion in La1–xSrxCoO3−δ thin films. ACS Nano 7, 32763286 (2013).CrossRefGoogle ScholarPubMed
Riva, M., Kubicek, M., Hao, X., Franceschi, G., Gerhold, S., Schmid, M., Hutter, H., Fleig, J., Franchini, C., Yildiz, B., and Diebold, U.: Influence of surface atomic structure demonstrated on oxygen incorporation mechanism at a model perovskite oxide. Nat. Commun. 9, 19 (2018).CrossRefGoogle Scholar
Pomfret, M.B., Stoltz, C., Varughese, B., and Walker, R.A.: Structural and compositional characterization of yttria-stabilized zirconia: evidence of surface-stabilized, low-valence metal species. Anal. Chem. 77, 17911795 (2005).CrossRefGoogle ScholarPubMed
Götsch, T., Bertel, E., Menzel, A., Stöger-Pollach, M., and Penner, S.: Spectroscopic investigation of the electronic structure of yttria-stabilized zirconia. Phys. Rev. Mater. 2, 035801035809 (2018).CrossRefGoogle Scholar
Tu, C.-S., Chien, R.R., Schmidt, V.H., Lee, S.C., and Huang, C.-C.: Temperature-dependent structures of proton-conducting Ba(Zr0.8–xCexY0.2)O2.9 ceramics by Raman scattering and X-ray diffraction. J. Phys. Condens. Matter 24, 155403155410 (2012).CrossRefGoogle Scholar
Blinn, K.S.: Investigation of electrode surfaces in solid oxide fuel cells using Raman mapping and enhanced spectroscopy techniques. Ph.D. Dissertation, Georgia Institute of Technology, 2012.Google Scholar
Li, X., Blinn, K., Chen, D., and Liu, M.: In situ and surface-enhanced Raman spectroscopy study of electrode materials in solid oxide fuel cells. Electrochem. Energy Rev. 1, 433459 (2018).CrossRefGoogle Scholar
McCreery, R.L.: Raman Spectroscopy for Chemical Analysis. (John Wiley & Sons, New York, 2000).CrossRefGoogle Scholar
Slodczyk, A., Colomban, P., Willemin, S., Lacroix, O., and Sala, B.: Indirect Raman identification of the proton insertion in the high-temperature [Ba/Sr][Zr/Ti]O3-modified perovskite protonic conductors. J. Raman Spectrosc. 40, 513521 (2009).CrossRefGoogle Scholar
Slodczyk, A., Colomban, P., Lamago, D., Limage, M.-H., Romain, F., Willemin, S., and Sala, B.: Phase transitions in the H+-conducting perovskite ceramics by the quasi-elastic neutron and high-pressure Raman scattering. Ionics 14, 215222 (2008).CrossRefGoogle Scholar
Sirenko, A.A., Akimov, I.A., Fox, J.R., Clark, A.M., Li, H.-C., Si, W., and Xi, X.X.: Observation of the first-order Raman scattering in SrTiO3 Thin Films. Phys. Rev. Lett. 82, 45004503 (1999).CrossRefGoogle Scholar
NIST X-ray Photoelectron Spectroscopy (XPS): Database Main Search Menu. https://srdata.nist.gov/xps/main_search_menu.aspx (accessed April 2, 2020).Google Scholar
CRC: CRC Handbook of Chemistry and Physics. 72nd Edition (CRC Press, Ann Arbor, MI, 1991), pp. 5.165.59.Google Scholar
Supplementary material: File

Welander et al. supplementary material

Welander et al. supplementary material

Download Welander et al. supplementary material(File)
File 1 MB