Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-13T17:19:14.957Z Has data issue: false hasContentIssue false

X-ray reflectometry investigation of interfacial structure of CrAlN/TiAlN multilayers

Published online by Cambridge University Press:  27 September 2016

Xiaoming Du*
Affiliation:
School of Materials Science and Engineering, Shenyang Ligong University, Shenyang 110159, China
Minpeng Wang
Affiliation:
School of Materials Science and Engineering, Shenyang Ligong University, Shenyang 110159, China
Gang Zhang
Affiliation:
School of Materials Science and Engineering, Shenyang Ligong University, Shenyang 110159, China
Yan Wang
Affiliation:
Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China
Xinxi Li
Affiliation:
Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China
Chaoqiang Huang
Affiliation:
Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China
*
Address all correspondence to X.M. Du at du511@163.com
Get access

Abstract

TiAlN, CrAlN films and alternate CrAlN/TiAlN multilayers with different repeated bilayer thickness ranging from 10 to 30 nm were prepared by reactive magnetron sputtering. The interface structures of the films were characterized using x-ray reflectometry method. The individual thickness of the repeated bilayers in multilayers and total thickness of the films are close to the nominal thickness and they are more accurate for thicker films. The interface roughness increases as the thickness of the repeated bilayer in mutilayers decreases. The scattering length density profiles of the films suggests that the chemical composition is more accurate for thicker films.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Souto, R.M. and Alanyali, H.: Electrochemical characteristics of steel coated with TiN and TiAlN coatings. Corros. Sci. 42, 2201 (2000).Google Scholar
2. Grips, V.K.W., Barshilia, H.C., Selvi, V.E., and Kalavati, R.K.S.: Electrochemical behavior of single layer CrN, TiN, TiAlN coatings and nanolayered TiAlN/CrN multilayer coatings prepared by reactive direct current magnetron sputtering. Thin Solid Films 514, 204 (2006).Google Scholar
3. Liu, G.T., Duh, J.G., Cheng, K.H., and Wang, J.H.: Mechanical characteristics and corrosion behavior of (Ti,Al)N coatings on dental alloys. Surf. Coat. Technol. 200, 2100 (2005).Google Scholar
4. Wahlström, U., Hultman, L., Sundgren, J.E., Adibi, F., Petrov, I., and Greene, J.E.: Crystal growth and microstructure of polycrystalline Ti1−xAlxN alloy films deposited by ultra-high-vacuum dual-target magnetron sputtering. Thin Solid Films 235, 62 (1993).CrossRefGoogle Scholar
5. Carvalho, S., Rebouta, L., Cavaleiro, A., Rocha, L.A., Gomes, J., and Alves, E.: Microstructure and mechanical properties of nanocomposite (Ti,Si,Al)N coatings. Thin Solid Films 398, 391 (2001).Google Scholar
6. Yang, Q., Seo, D.Y., Zhao, L.R., and Zeng, X.T.: Erosion resistance performance of magnetron sputtering deposited TiAIN coatings. Surf. Coat. Technol. 188–189, 168 (2004).Google Scholar
7. Fox-Rabinovich, G.S., Beake, B.D., Endrino, J.L., Veldhuis, S.C., Parkinson, R., Shuster, L.S., and Migranov, M.S.: Effect of mechanical properties measured at room and elevated temperatures on the wear resistance of cutting tools with TiAlN and AlCrN coatings. Surf. Coat. Technol. 200, 5738 (2006).Google Scholar
8. Willmann, H., Mayrhofer, P.H., Persson, P.O.Å., Reiter, A.E., Hultman, L., and Mitterer, C.: Thermal stability of Al–Cr–N hard coatings. Scr. Mater. 54, 1847 (2006).Google Scholar
9. Wuhrer, R. and Yeung, W.Y.: A comparative study of magnetron co-sputtered nanocrystalline titanium aluminium and chromium aluminium nitride coatings. Scr. Mater. 50, 1461 (2004).CrossRefGoogle Scholar
10. Moreira, M.A., Bjurstrom, J., Yantchev, V., and Katardjiev, I.: Synthesis and characterization of highly c-textured Al1−xScxN thin films in view of telecom applications. IOP Conf. Ser. Mater. Sci. Eng. 41, 1 (2012).CrossRefGoogle Scholar
11. Rovere, F., Music, D., Schneider, J.M., and Mayrhofer, P.H.: Experimental and computational study on the effect of yttrium on the phase stability of sputtered Cr-Al-Y-N hard coatings. Acta Mater. 58, 2708 (2010).Google Scholar
12. Miletić, A., Panjan, P., Škorić, B., Čekada, M., Dražič, G., and Kovač, J.: Microstructure and mechanical properties of nanostructured Ti-Al-Si-N coatings deposited by magnetron sputtering. Surf. Coat. Technol. 241, 105 (2014).Google Scholar
13. Riedl, H., Holec, D., Rachbauer, R., Polcik, P., Hollerweger, R., Paulitsch, J., and Paul, H.: Mayrhofer, Phase stability, mechanical properties and thermal stability of Y alloyed Ti-Al-N coatings, Surf. Coat. Technol. 235, 174 (2013).CrossRefGoogle Scholar
14. Wei, Y.Q., Zong, X.Y., Wu, Z.Z., Tian, X.B., Gong, C.Z., Yang, S.Q., Jiang, Z.Q., and Chen, L.J.: Effects of modulation ratio on microstructure and properties of TiN/TiAlN multilayer coatings. Surf. Coat. Technol. 229, 191 (2013).Google Scholar
15. Li, P., Chen, L., Wang, S.Q., Yang, B., Du, Y., Li, J., and Wu, M.J.: Microstructure, mechanical and thermal properties of TiAlN/CrAlN multilayer coatings. Int. J. Refract. Met. H. 40, 51 (2013).Google Scholar
16. Sun, Y.D., Yan, J.Y., Zhang, S., Xue, F.Y., Liu, G.Q., and Li, D.J.: Influence of modulation periods and modulation ratios on the structure and mechanical properties of nanoscale TiAlN/TiB2 multilayers prepared by IBAD. Vacuum 86, 949 (2012).CrossRefGoogle Scholar
17. Yan, J.Y., Li, D.J., Dong, L., Gao, C.K., Wang, N., Deng, X.Y., Gu, H.Q., Wan, R.X., and Sun, X.: The modulation structure induced changes in mechanical properties of TiAlN/Al2O3 multilayers. Nuclear Instrum. Meth. Phys. Res. B 307, 123 (2013).Google Scholar
18. Rizzo, A., Mirenghi, L., Massaro, M., Galietti, U., Capodieci, L., Terzi, R., Tapfer, L., and Valerini, D.: Improved properties of TiAlN coatings through the multilayer structure. Surf. Coat. Technol. 235, 475 (2013).Google Scholar
19. Miller, C.E., Majewski, J., Gog, T., and Kuhl, T.L.: Characterization of biological thin films at the solid-liquid interface by x-ray reflectivity. Phys. Rev. Lett. 94, 238104 (2005).Google Scholar
20. Charitat, T., Bellet-Amalric, E., Fragneto, G., and Graner, F.: Adsorbed and free lipid bilayers at the solid-liquid interface. Eur. Phys. J. 8, 583 (1999).Google Scholar
21. Steitz, R., Gutberlet, T., Hauss, T., Liosgen, B., Krastev, R., and Schemmel, S.: Nanobubbles and their precursor layer at the interface of water against a hydrophobic substrate. Langmuir 19, 2409 (2003).Google Scholar
22. Pardo, J., Megademini, T., and Andre, J.M.: X-UV synthetic interference mirrors: theoretical approach. Rev. Phys. Appl. 23, 1579 (1988).Google Scholar
23. Liu, S.P., Kang, Y.B., Wang, H., Li, Q., Dong, L., Deng, X.Y., and Li, D.J.: Influence of modulation ratio on the structure and mechanical properties of TiB2/TiAlN multilayered coatings. Mater. Lett. 62, 3536 (2008).Google Scholar
24. Gao, C.K., Yan, J.Y., Dong, L., and Li, D.J.: Influence of Al2O3 layer thickness on high-temperature stabilityof TiAlN/Al2O3 multilayers. Appl. Surf. Sci. 285, 287 (2013).Google Scholar
25. Parratt, L.G.: Surface studies of solids by total reflection of X-ray. Phys. Rev. 95, 359 (1954).Google Scholar
26. Sinha, S.K., Sirota, E.B., and Garoff, S.: X-ray and neutron scattering from rough surfaces. Phys. Rev. B 38, 2297 (1988).CrossRefGoogle ScholarPubMed
27. Braun, C.: Parratt32 Software (ver.1.6). (HMI, Berlin, 2002).Google Scholar
28. Barshilia, H.C., Jain, A., and Rajam, K.S.: Structure, hardness and thermal stability of nanolayered TiN/CrN multilayer coatings. Vacuum 72, 241 (2004).CrossRefGoogle Scholar
29. Chu, X., Wong, M.S., Sproul, W.D., Rohde, S.L., and Barnett, S.A.: Deposition and properties of polycrystalline TiN/NbN superlattice coatings. J. Vac. Sci. Technol. A 10, 1604 (1992).CrossRefGoogle Scholar
30. Yao, S.Y., Su, Y.L., and Kao, W.H.: Tribology and oxidation behaviour of TiN/AlN nano-multilayer films. Tribol. Int. 39, 332 (2006).Google Scholar
31. Koehler, J.S.: Attempt to design a strong solid. Phys. Rev. B 2, 547 (1970).Google Scholar
32. Ghose, S.K., and Dev, B.N.: X-ray standing wave and reflectometric characterization of multilayer structures. Phys. Rev. B 63, 245409 (2001).Google Scholar
33. Gupta, A., Kumar, D., and Phatak, V.: Asymmetric diffusion at the interfaces in Fe/Si multilayers. Phys. Rev. B 81, 155402 (2010).Google Scholar
34. Singh, S., Basu, S., Gupta, M., Majkrzak, C.F., and Kienzle, P.A.: Using acoustic waves to induce high-frequency current oscillations in superlattices. Phys. Rev. B 81, 235413 (2010).Google Scholar