Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-14T23:35:51.997Z Has data issue: false hasContentIssue false

Water flow enhancement in amorphous silica nanochannels coated with monolayer graphene

Published online by Cambridge University Press:  10 July 2020

Enrique Wagemann
Affiliation:
Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Concepción, Concepción, Chile
Diego Becerra
Affiliation:
Departamento de Ingeniería Química, Facultad de Ingeniería, Universidad de Concepción, Concepción, Chile
Jens H. Walther
Affiliation:
Department of Mechanical Engineering, Technical University of Denmark, Copenhagen, Denmark Chair of Computational Science, ETH Zurich, Zurich, Switzerland
Harvey A. Zambrano*
Affiliation:
Department of Mechanical Engineering, Universidad Técnica Federico Santa María, Valparaiso, Chile
*
Address all correspondence to Harvey A. Zambrano at harvey.zambrano@usm.cl
Get access

Abstract

Inspired by the recently reported translucency of monolayer graphene (GE) to wetting, atomistic simulations are employed to evaluate water flow enhancement induced by GE deposited on the inner surfaces of hydrophilic nanochannels. The flow in the coated channels exhibits a slip length of approximately 3.0 nm. Moreover, by contrasting the flow rates in channels with coated walls against flow rates in the corresponding uncoated channels, an “effective” flow enhancement from 3.2 to 3.7 is computed. The probability density function of the water dipole orientation indicates that the flow enhancement is related to a thinner structured water layer at the solid–liquid interface. This study provides quantitative evidence that GE employed as coating reduces substantially hydraulic losses in hydrophilic nanoconfinement.

Type
Research Letters
Copyright
Copyright © Materials Research Society, 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Gao, J., Feng, Y., Guo, W., and Jiang, L.: Nanofluidics in two-dimensional layered materials: inspirations from nature. Chem. Soc. Rev. 46, 5400 (2017).CrossRefGoogle ScholarPubMed
Goertz, M.P., Houston, J., and Zhu, X.-Y.: Hydrophilicity and the viscosity of interfacial water. Langmuir 23, 5491 (2007).CrossRefGoogle ScholarPubMed
Ortiz-Young, D., Chiu, H.-C., Kim, S., Voïtchovsky, K., and Riedo, E.: The interplay between apparent viscosity and wettability in nanoconfined water. Nat. Commun. 4, 1 (2013).CrossRefGoogle ScholarPubMed
Kannam, S.K., Todd, B., Hansen, J.S., and Daivis, P.J.: How fast does water flow in carbon nanotubes? J. Chem. Phys. 138, 094701 (2013).CrossRefGoogle ScholarPubMed
Liu, B., Wu, R., Baimova, J.A., Wu, H., Law, A.W.-K., Dmitriev, S.V., and Zhou, K.: Molecular dynamics study of pressure-driven water transport through graphene bilayers. Phys. Chem. Chem. Phys. 18, 1886 (2016).CrossRefGoogle Scholar
Wagemann, E., Oyarzua, E., Walther, J.H., and Zambrano, H.A.: Slip divergence of water flow in graphene nanochannels: the role of chirality. Phys. Chem. Chem. Phys. 19, 8646 (2017).CrossRefGoogle ScholarPubMed
Falk, K., Sedlmeier, F., Joly, L., Netz, R.R., and Bocquet, L.: Molecular origin of fast water transport in carbon nanotube membranes: superlubricity versus curvature dependent friction. Nano Lett. 10, 4067 (2010).CrossRefGoogle ScholarPubMed
Tocci, G., Joly, L., and Michaelides, A.: Friction of water on graphene and hexagonal boron nitride from ab initio methods: very different slippage despite very similar interface structures. Nano Lett. 14, 6872 (2014).CrossRefGoogle ScholarPubMed
Wagemann, E., Walther, J.H., Cruz-Chu, E., and Zambrano, H.A.: Water flow in silica nanopores coated by carbon nanotubes from a wetting translucency perspective. J. Phys. Chem. C 123, 25635 (2019).CrossRefGoogle Scholar
Joseph, S. and Aluru, N.: Why are carbon nanotubes fast transporters of water? Nano Lett. 8, 452 (2008).CrossRefGoogle ScholarPubMed
Jung, W., Kim, J., Kim, S., Park, H.G., Jung, Y., and Han, C.-S.: A novel fabrication of 3.6 nm high graphene nanochannels for ultrafast ion transport. Adv. Mater. 29, 1 (2008).Google Scholar
Akaishi, A., Yonemaru, T., and Nakamura, J.: Formation of water layers on graphene surfaces. ACS Omega 2, 2184 (2017).CrossRefGoogle ScholarPubMed
Feng, J. and Guo, Z.: Wettability of graphene: from influencing factors and reversible conversions to potential applications. Nanoscale Horiz. 4, 339 (2019).CrossRefGoogle ScholarPubMed
Chakradhar, A., Sivapragasam, N., Nayakasinghe, M.T., and Burghaus, U.: Support effects in the adsorption of water on cvd graphene: an ultra-high vacuum adsorption study. Chem. Commun. 51, 11463 (2015).CrossRefGoogle ScholarPubMed
Shih, C.-J., Strano, M.S., and Blankschtein, D.: Wetting translucency of graphene. Nat. Mat. 12, 866 (2013).CrossRefGoogle ScholarPubMed
Hong, G., Han, Y., Schutzius, T.M., Wang, Y., Pan, Y., Hu, M., Jie, J., Sharma, C.S., Muller, U., and Poulikakos, D.: On the mechanism of hydrophilicity of graphene. Nano Lett. 16, 4447 (2016).CrossRefGoogle ScholarPubMed
Ashraf, A., Wu, Y., Wang, M.C., Yong, K., Sun, T., Jing, Y., Haasch, R.T., Aluru, N.R., and Nam, S.: Doping-induced tunable wettability and adhesion of graphene. Nano Lett. 16, 4708 (2016).CrossRefGoogle ScholarPubMed
Rafiee, J., Mi, X., Gullapalli, H., Thomas, A.V., Yavari, F., Shi, Y., Ajayan, P.M., and Koratkar, N.A.: Wetting transparency of graphene. Nat. Mat. 11, 217 (2012).CrossRefGoogle ScholarPubMed
Shih, C.-J., Wang, Q.H., Lin, S., Park, K.-C., Jin, Z., Strano, M.S., and Blankschtein, D.: Breakdown in the wetting transparency of graphene. Phys. Rev. Lett. 109, 176101 (2012).CrossRefGoogle ScholarPubMed
Lu, J.-Y., Olukan, T., Tamalampudi, S.R., Al-Hagri, A., Lai, C.-Y., Al Mahri, M.A., Apostoleris, H., Almansouri, I., and Chiesa, M.: Insights into graphene wettability transparency by locally probing its surface free energy. Nanoscale 11, 7944 (2019).CrossRefGoogle ScholarPubMed
Ramos-Alvarado, B., Kumar, S., and Peterson, G.: On the wettability transparency of graphene-coated silicon surfaces. J. Chem. Phys. 144, 014701 (2016).CrossRefGoogle ScholarPubMed
Raj, R., Maroo, S.C., and Wang, E.N.: Wettability of graphene. Nano Lett. 13, 1509 (2013).CrossRefGoogle ScholarPubMed
Hung, S.-W., Hsiao, P.-Y., Chen, C.-P., and Chieng, C.-C.: Wettability of graphene-coated surface: free energy investigations using molecular dynamics simulation. J. Phys. Chem. C 119, 8103 (2015).CrossRefGoogle Scholar
Ramos-Alvarado, B., Kumar, S., and Peterson, G.: Wettability transparency and the quasiuniversal relationship between hydrodynamic slip and contact angle. Appl. Phys. Lett. 108, 074105 (2016).CrossRefGoogle Scholar
Xie, Q., Alibakhshi, M.A., Jiao, S., Xu, Z., Hempel, M., Kong, J., Park, H.G., and Duan, C.: Fast water transport in graphene nanofluidic channels. Nat. Nanotechnol. 13, 238 (2018).CrossRefGoogle ScholarPubMed
Jin, Y., Tao, R., and Li, Z.: Understanding flow enhancement in graphene-coated nanochannels. Electrophoresis 40, 859 (2019).CrossRefGoogle ScholarPubMed
Sam, A., Kannam, S.K., Hartkamp, R., and Sathian, S.P.: Water flow in carbon nanotubes: the effect of tube flexibility and thermostat. J. Chem. Phys. 146, 234701 (2017).CrossRefGoogle ScholarPubMed
Lee, T., Charrault, E., and Neto, C.: Interfacial slip on rough, patterned and soft surfaces: a review of experiments and simulations. Adv. Coll. Interf. Sci. 210, 21 (2014).CrossRefGoogle ScholarPubMed
Walther, J.H., Jaffe, R., Halicioglu, T., and Koumoutsakos, P.: Carbon nanotubes in water: structural characteristics and energetics. J. Phys. Chem. B 105, 9980 (2001).CrossRefGoogle Scholar
Berendsen, H.J.C., Grigera, J.R., and Straatsma, T.P.: The missing term in effective pair potentials. J. Phys. Chem. 91, 6269 (1987).CrossRefGoogle Scholar
Guissani, Y. and Guillot, B.: A numerical investigation of the liquid-vapor coexistence curve of silica. J. Chem. Phys. 104, 7633 (1996).CrossRefGoogle Scholar
Tsuneyuki, S., Tsukada, M., Aoki, H., and Matsui, Y.: First-principles interatomic potential of silica applied to molecular dynamics. Phys. Rev. Lett. 61, 869 (1988).CrossRefGoogle ScholarPubMed
Zambrano, H., Walther, J.H., and Jaffe, R.: Molecular dynamics simulations of water on a hydrophilic silica surface at high air pressures. J. Mol. Liq. 198, 107 (2014).CrossRefGoogle Scholar
Werder, T., Walther, J.H., Jaffe, R.L., Halicioglu, T., and Koumoutsakos, P.: On the water-graphite interaction for use in MD simulations of graphite and carbon nanotubes. J. Phys. Chem. B 107, 1345 (2003).CrossRefGoogle Scholar
Zhang, Z. and Li, T.: A molecular mechanics study of morphologic interaction between graphene and Si nanowires on a SiO2 substrate. J. Nanomat. 2011, 374018 (2011).CrossRefGoogle Scholar
Thomas, J.A. and McGaughey, A.J.: Reassessing fast water transport through carbon nanotubes. Nano Lett. 8, 2788 (2008).CrossRefGoogle ScholarPubMed
Wu, K., Chen, Z., Li, J., Xu, J., and Dong, X.: Wettability effect on nanoconfined water flow. Proc. Natl. Acad. Sci. USA 114, 3358 (2017).CrossRefGoogle ScholarPubMed
González, M.A. and Abascal, J.L.: The shear viscosity of rigid water models. J. Chem. Phys. 132, 096101 (2010).CrossRefGoogle ScholarPubMed
Choi, C.-H., Westin, K.J.A., and Breuer, K.S.: Apparent slip flows in hydrophilic and hydrophobic microchannels. Phys. Fluids 15, 2897 (2003).CrossRefGoogle Scholar
Giovambattista, N., Debenedetti, P.G., and Rossky, P.J.: Effect of surface polarity on water contact angle and interfacial hydration structure. J. Phys. Chem. B 111, 9581 (2007).CrossRefGoogle ScholarPubMed
Karna, N.K., Crisson, A.R., Wagemann, E., Walther, J.H., and Zambrano, H.A.: Effect of an external electric field on capillary filling of water in hydrophilic silica nanochannels. Phys. Chem. Chem. Phys. 20, 18262 (2018).CrossRefGoogle ScholarPubMed
Supplementary material: PDF

Wagemann et al. Supplementary Materials

Wagemann et al. Supplementary Materials

Download Wagemann et al. Supplementary Materials(PDF)
PDF 2.2 MB