Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-14T12:17:16.276Z Has data issue: false hasContentIssue false

Vortex glass-liquid transition and activated flux motion in an epitaxial, superconducting NdFeAs(O,F) thin film

Published online by Cambridge University Press:  02 October 2018

J. Hänisch*
Affiliation:
Institute for Technical Physics, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
K. Iida
Affiliation:
Department of Materials Physics & Department of Crystalline Materials Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
T. Ohmura
Affiliation:
Department of Crystalline Materials Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
T. Matsumoto
Affiliation:
Department of Materials Physics & Department of Crystalline Materials Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
T. Hatano
Affiliation:
Department of Materials Physics & Department of Crystalline Materials Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
M. Langer
Affiliation:
Institute for Technical Physics, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
S. Kauffmann-Weiss
Affiliation:
Institute for Technical Physics, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
H. Ikuta
Affiliation:
Department of Materials Physics & Department of Crystalline Materials Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
B. Holzapfel
Affiliation:
Institute for Technical Physics, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
*
Address all correspondence to J. Hänisch at jens.haenisch@kit.edu
Get access

Abstract

An epitaxial NdFeAs(O,F) thin film of 90 nm thickness grown by molecular beam epitaxy on MgO single crystal with Tc = 44.2 K has been investigated regarding a possible vortex glass–liquid transition. The voltage–current characteristics show excellent scalability according to the vortex-glass model with a static critical exponent ν of around 1.35 and a temperature-dependent dynamic exponent z increasing from 7.8 to 9.0 for the investigated temperature range. The large and non-constant z values are discussed in the frame of 3D vortex glass, thermally activated flux motion, and inhomogeneity broadening.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Koch, R., Foglietti, V., Gallagher, W., Koren, G., Gupta, A., and Fisher, M.: Experimental evidence for vortex-glass superconductivity in Y-Ba-Cu-O. Phys. Rev. Lett. 63, 1511 (1989).10.1103/PhysRevLett.63.1511Google Scholar
2.Chang, H., Luo, J., Wu, C., Hsu, F., Huang, T., Wu, P., Wu, M., and Wang, M.: The vortex state of FeSe1−xTex superconducting thin films. Supercond. Sci. Technol. 24, 105011 (2011).10.1088/0953-2048/24/10/105011Google Scholar
3.Song, Y., Kang, B., Rhee, J.-S., and Kwon, Y.: Thermally activated flux flow and fluctuation conductivity in LiFeAs single crystal. EPL 97, 47003 (2012).10.1209/0295-5075/97/47003Google Scholar
4.Hao, F., Zhang, M., Teng, M., Yin, Y., Jiao, W., Cao, G., and Li, X.: Angle-resolved vortex glass transition and pinning properties in BaFe1.8Co0.2As2 single crystals. J. Appl. Phys. 117, 173901 (2015).10.1063/1.4919776Google Scholar
5.Lee, H., Bartkowiak, M., Kim, J., and Lee, H.-J.: Magnetic-field-induced crossover of vortex-line coupling in SmFeAsO0.85 single crystal. Phys. Rev. B 82, 104523 (2010).10.1103/PhysRevB.82.104523Google Scholar
6.Zhang, Y., Ren, Z., and Zhao, Z.: Thermally activated energy and critical magnetic fields of SmFeAsO0.9F0.1. Supercond. Sci. Technol. 22, 065012 (2009).10.1088/0953-2048/22/6/065012Google Scholar
7.Liu, Y., Chai, Y., Kim, H.-J., Stewart, G., and Kim, K.: Current-voltage characteristics of NdFeAsO0.85F0.15 and NdFeAsO0.85 superconductors. J. Korean Phys. Soc. 55, L383 (2009).10.3938/jkps.55.383Google Scholar
8.Xie, R., Lv, B., Shao, H., and Wu, X.: Universal scaling analysis on vortex-glass state of high-temperature superconductor HgBa2Ca2Cu3O8+δ. IEEE Trans. Appl. Supercond. 47, 2600 (2011).Google Scholar
9.Kawaguchi, T., Uemura, H., Ohno, T., Tabuchi, M., Ujihara, T., Takeda, Y., and Ikuta, H.: Molecular beam epitaxy growth of superconducting NdFeAs(O,F) thin films using a F-getter and a novel F-doping method. Appl. Phys. Express 4, 083102 (2011).10.1143/APEX.4.083102Google Scholar
10.Palstra, T., Batlogg, B., Dover, R.V., Schneemeyer, L., and Waszczak, J.: Dissipative flux motion in high-temperature superconductors. Phys. Rev. B 41, 6621 (1990).10.1103/PhysRevB.41.6621Google Scholar
11.Zhang, Y., Wen, H., and Wang, Z.: Thermally activated energies of YBa2Cu3O7−δ and Y0.8Ca0.2Ba2Cu3O7−δ thin films. Phys. Rev. B 74, 144521 (2006).10.1103/PhysRevB.74.144521Google Scholar
12.Jaroszynski, J., Hunte, F., Balicas, L., Jo, Y.-J., Raicevic, I., Gurevich, A., Larbalestier, D., Balakirev, F., Fang, L., Cheng, P., Jia, Y., and Wen, H.: Upper critical fields and thermally-activated transport of NdFeAsO0.7F0.3 single crystal. Phys. Rev. B 78, 174523 (2008).10.1103/PhysRevB.78.174523Google Scholar
13.Iida, K., Hänisch, J., Tarantini, C., Kurth, F., Jaroszynski, J., Ueda, S., Naito, M., Ichinose, A., Tsukada, I., Reich, E., Grinenko, V., Schultz, L., and Holzapfel, B.: Oxypnictide SmFeAs(O,F) superconductor: a candidate for high-field magnet applications. Sci. Rep. 3, 2139 (2013).10.1038/srep02139Google Scholar
14.Kidszun, M., Haindl, S., Reich, E., Hänisch, J., Iida, K., Schultz, L., and Holzapfel, B.: Epitaxial LaFeAsO1−xFx thin films grown by pulsed laser deposition. Supercond. Sci. Technol. 23, 022002 (2010).10.1088/0953-2048/23/2/022002Google Scholar
15.Shahbazi, M., Wang, X., Shekhar, C., Srivastava, O., Lin, Z., Zhu, J., and Dou, S.: Upper critical field and thermally activated flux flow in LaFeAsO1−xFx. J. Appl. Phys. 109, 07E162 (2011).10.1063/1.3566069Google Scholar
16.Thompson, J., Sorge, K., Cantoni, C., Kerchner, H., Christen, D., and Paranthaman, M.: Vortex pinning and slow creep in high-J c MgB2 thin films: a magnetic and transport study. Supercond. Sci. Technol. 18, 970 (2005).10.1088/0953-2048/18/7/008Google Scholar
17.Yamasaki, H., Endo, K., Kosaka, S., Umeda, M., Yoshida, S., and Kajimura, K.: Quasi-two-dimensional vortex-glass transition observed in epitaxial Bi2Sr2Ca2Cu3Ox films. Phys. Rev. B 50, 12959 (1994).10.1103/PhysRevB.50.12959Google Scholar
18.Safar, H., Foltyn, S., Jia, Q., and Maley, M.: Bose glass vortex phase transition in twinned YBa2Cu307−δ superconductors. Philos. Mag. B 74, 647 (1996).10.1080/01418639608240365Google Scholar
19.Kim, H.-J., Kang, W., Choi, E.-M., Kim, M.-S., Kim, K.H., and Lee, S.-I.: High current-carrying capability in c-axis-oriented superconducting MgB2 thin films. Phys. Rev. Lett. 87, 087002 (2001).10.1103/PhysRevLett.87.087002Google Scholar
20.Koch, R., Foglietti, V., and Fisher, M.: Reply. Phys. Rev. Lett. 64, 2586 (1990).10.1103/PhysRevLett.64.2586Google Scholar
21.Heinig, N., Redwing, R., Nordman, J., and Larbalestier, D.: Strong to weak coupling transition in low misorientation angle thin film YBa2Cu3O7−x bicrystals. Phys. Rev. B 60, 1409 (1999).10.1103/PhysRevB.60.1409Google Scholar
22.Trastoy, J., Ruoco, V., Ulysse, C., Bernard, R., Palau, A., Puig, T., Faini, G., Lesueur, J., Briatico, J., and Villegas, J.: Unusual magneto-transport of YBa2Cu3O7−δ films due to the interplay of anisotropy, random disorder and nanoscale periodic pinning. New J. Phys. 15, 103022 (2013).10.1088/1367-2630/15/10/103022Google Scholar
23.Tarantini, C., Iida, K., Sumiya, N., Chihara, M., Hatano, T., Ikuta, H., Singh, R., Newman, N., and Larbalestier, D.: Effect of α-particle irradiation on a NdFeAs(O,F) thin film. Supercond. Sci. Technol. 31, 034002 (2018).10.1088/1361-6668/aaa821Google Scholar
24.Liu, S., Wu, G., Xu, X., Wu, J., and Shao, H.: Scaling of the vortex–liquid resistivity in high temperature superconductors. Supercond. Sci. Technol. 18, 1332 (2005).10.1088/0953-2048/18/10/014Google Scholar
25.Andersson, M., Rydh, A., and Rapp, Ö.: Scaling of the vortex-liquid resistivity in optimally doped and oxygen-deficient YBa2Cu3O7−δ single crystals. Phys. Rev. B 63, 184511 (2001).10.1103/PhysRevB.63.184511Google Scholar
26.Ghorbani, S., Wang, X., Shahbazi, M., Dou, S., Choi, K., and Lin, C.: Flux pinning and vortex transitions in doped BaFe2As2 single crystals. Appl. Phys. Lett. 100, 072603 (2012).10.1063/1.3685507Google Scholar
27.Yi, X., Wang, C., Tang, Q., Peng, T., Qiu, Y., Xu, J., Sun, H., Luo, Y., and Yu, B.: Vortex phase transition and anisotropy behavior of optimized (Li1−xFexOH)FeSe single crystals. Supercond. Sci. Technol. 29, 105015 (2016).10.1088/0953-2048/29/10/105015Google Scholar
28.Voss-de Haan, M., Jakob, G., and Adrian, H.: High dynamic exponents in vortex glass transitions: dependence of critical scaling on the electric-field range. Phys. Rev. B 60, 12443 (1999).10.1103/PhysRevB.60.12443Google Scholar
29.Coppersmith, S., Inui, M., and Littlewood, P.: Comment on experimental evidence for vortex-glass superconductivity in Y-Ba-Cu-O. Phys. Rev. Lett. 64, 2585 (1990).10.1103/PhysRevLett.64.2585Google Scholar
30.Hu, X., He, L., Ning, Z., Chen, K., Yin, L., Lu, G., Xu, X., Guo, J., Wang, F., Li, C., and Yin, D.: Critical scaling of extended power law I -V isotherms near vortex glass transition. Chin. Phys. Lett. 23, 3349 (2006).Google Scholar
31.Strachan, D., Sullivan, M., Fournier, P., Pai, S., Venkatesan, T., and Lobb, C.: Do superconductors have zero resistance in a magnetic field? Phys. Rev. Lett. 87, 067007 (2001).10.1103/PhysRevLett.87.067007Google Scholar
32.Sullivan, M., Frederiksen, T., Repaci, J., Strachan, D., Ott, R., and Lobb, C.: Normal-superconducting phase transition mimicked by current noise. Phys. Rev. B 70, 140503(R) (2004).10.1103/PhysRevB.70.140503Google Scholar
33.Matsushita, T., Tohdoh, T., and Ihara, N.: Effects of inhomogeneous flux pinning strength and flux flow on scaling of current-voltage characteristics in high-temperature superconductors. Physica C 259, 321 (1996).10.1016/0921-4534(96)00056-1Google Scholar