Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-13T11:49:45.459Z Has data issue: false hasContentIssue false

Ultrahigh strength of three-dimensional printed diluted magnesium doping wollastonite porous scaffolds

Published online by Cambridge University Press:  21 December 2015

Jiajun Xie
Affiliation:
Zhejiang Provincial Key Laboratory of Ophthalmology, Second Affiliated Hospital, School of Medicine of Zhejiang University, Hangzhou 310009, China
Huifeng Shao
Affiliation:
Zhejiang Province's Key Laboratory of 3D Printing Process and Equipment, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
Dongshuang He
Affiliation:
Zhejiang-California International Nanosystem Institute, Zhejiang University, Hangzhou 310058, China
Xianyan Yang
Affiliation:
Zhejiang-California International Nanosystem Institute, Zhejiang University, Hangzhou 310058, China
Chunlei Yao
Affiliation:
Zhejiang Provincial Key Laboratory of Ophthalmology, Second Affiliated Hospital, School of Medicine of Zhejiang University, Hangzhou 310009, China
Juan Ye
Affiliation:
Zhejiang Provincial Key Laboratory of Ophthalmology, Second Affiliated Hospital, School of Medicine of Zhejiang University, Hangzhou 310009, China
Yong He
Affiliation:
Zhejiang Province's Key Laboratory of 3D Printing Process and Equipment, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
Jianzhong Fu
Affiliation:
Zhejiang Province's Key Laboratory of 3D Printing Process and Equipment, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
Zhongru Gou*
Affiliation:
Zhejiang-California International Nanosystem Institute, Zhejiang University, Hangzhou 310058, China
*
Address all correspondence to Dr. Z. Gou atzhrgou@zju.edu.cn
Get access

Abstract

Beyond the traditional phase conversion or biphase mixing hybrid, we developed the dilute magnesium-doped wollastonite inks and three-dimensional (3D) printing approaches to fabricate the ultrahigh strength bioceramic porous scaffolds. The mechanical strength (>120 MPa) of the porous bioceramics was an order of magnitude higher than the pure wollastonite and other stoichiometric Ca–Mg silicate porous bioceramics. This abnormal but expected improvement in strength in bioceramic scaffolds is equivalent or even superior to the mechanical requirement in load-bearing bone defects. The breakthrough is totally unexpected, and it quickly opens the door for the 3D printing bioceramics manufacture and large-area segmental bone defect repair applications.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hollister, S.J.: Porous scaffold design for tissue engineering. Nat. Mater. 4, 518524 (2005).CrossRefGoogle ScholarPubMed
2. Henkel, J., Woodruff, M.A., Epari, D.R., Steck, R., Glatt, V., Dickinson, I.C., Choong, P.F.M., Schuetz, M.A., and Hutmacher, D.W.: Bone regeneration based on tissue engineering conceptions—A 21st century perspective. Bone Res. 3, 216248 (2013).CrossRefGoogle Scholar
3. Karageorgiou, V. and Kaplan, D.: Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26, 54745491 (2005).CrossRefGoogle ScholarPubMed
4. Kasten, P., Beyen, I., Niemeyer, P., Luginbühl, R., Bohner, M., and Richter, W.: Porosity and pore size of β-tricalcium phosphate scaffold can influence protein production and osteogenic differentiation of human mesenchymal stem cells: an in vitro and in vivo study. Acta Biomater. 4, 19041915 (2008).CrossRefGoogle ScholarPubMed
5. Jone, A.C., Arns, C.H., Hutmacher, D.W., Milthorpe, B.K., Sheppard, A.P., and Knackstedt, M.A.: The correlation of pore morphology, interconnectivity and physical properties of 3D ceramic scaffolds with bone ingrowth. Biomaterials 30, 14401451 (2009).CrossRefGoogle Scholar
6. Hoppe, A., Guldal, N.S., and Boccaccini, A.R.: A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials 32, 27572774 (2013).CrossRefGoogle Scholar
7. Weiss, P., Layrolle, P., Clergeau, L.P., Enckel, B., Pilet, P., Amouriq, Y., Daculsi, G., and Giumelli, B.: The safety and efficacy of an injectable bone substitute in dental sockets demonstrated in a human clinical trial. Biomaterials 28, 32953305 (2007).Google Scholar
8. Marcacci, M., Kon, E., Moukhachev, V., Lavroukov, A., Kutepov, S., Quarto, R., Mastrogiacomo, M., and Cancedda, R.: Stem cells associated with macroporous bioceramics for long bone repair: 6- to 7-year outcome of a pilot clinical study. Tissue Eng. 13, 947955 (2007).CrossRefGoogle ScholarPubMed
9. Wu, C. and Chan, J.: A review of bioactive silicate ceramics. Biomed. Mater. 8, 032001 (2013).CrossRefGoogle ScholarPubMed
10. Xu, S., Lin, K., Wang, Z., Chang, J., Wang, L., Lu, J., and Ning, C.: Reconstruction of calvarial defect of rabbits using porous calcium silicate bioactive ceramics. Biomaterials 29, 25882596 (2008).CrossRefGoogle ScholarPubMed
11. Diba, M., Goudouri, O.M., Tapia, F., and Boccaccini, A.R.: Magnesium-containing bioactive polycrystalline silicate-based ceramics and glass-ceramics for biomedical applications. Curr. Opin. Solid State Mater. Sci. 18, 147167 (2014).CrossRefGoogle Scholar
12. Diba, M., Tapia, F., and Boccaccin, A.R.: Magnesium-containing bioactive glasses for biomedical applications. Int. J. Appl. Glass Sci. 3, 221253 (2012).CrossRefGoogle Scholar
13. Descamps, M., Duhoo, T., Monchau, F., Lu, J., Hardouin, P., Hornez, J.C., and Leriche, A.: Manufacture of macroporous β-tricalcium phosphate bioceramics. J. Eur. Ceram. Soc. 28, 149157 (2008).Google Scholar
14. Deville, S., Saiz, E., Nalla, R.K., and Tomsia, A.P.: Freezing as a path to build complex composites. Science 311, 516518 (2006).CrossRefGoogle ScholarPubMed
15. Fu, Q., Saiz, E., and Tomsia, A.P.: Bioinspired strong and highly porous glass scaffolds. Adv. Funct. Mater. 21, 10581063 (2011).CrossRefGoogle ScholarPubMed
16. Deville, S., Saiz, E., and Tomsia, A.P.: Freeze casting of hydroxyapatite scaffolds for bone tissue engineering. Biomaterials 27, 54805489 (2006).CrossRefGoogle ScholarPubMed
17. Butscher, A., Bohner, M., Hofmann, S., Gauckler, L., and Müller, R.: Structural and material approaches to bone tissue engineering in powder-based three-dimensional printing. Acta Biomater. 7, 907920 (2011).CrossRefGoogle ScholarPubMed
18. Bergmann, C., Lindner, M., Zhang, W., Koczur, K., Kirsten, A., Telle, R., and Fischer, H.: 3D Printing of bone substitute implants using calcium phosphate and bioactive glasses. J. Eur. Ceram. Soc. 30, 25632567 (2010).CrossRefGoogle Scholar
19. Winkel, A., Meszaros, R., Reinsch, S., Müller, R., Travitzky, N., Fey, T., Greil, P., and Wondracze, L.: Sintering of 3D-printed glass/HAp composites. J. Am. Ceram. Soc. 95, 33873393 (2012).Google Scholar
20. Fu, Q., Saiz, E., Rahaman, M.N., and Tomsia, A.P.: Toward strong and tough glass and ceramic scaffolds. Adv. Funct. Mater. 23, 54615476 (2013).CrossRefGoogle ScholarPubMed
21. Chen, I.W. and Wan, X.H.: Sintering dense nanocrystalline ceramics without final-stage grain growth. Nature 40, 168–71 (2000).CrossRefGoogle Scholar
22. Shuai, C.J., Gao, D., Feng, P., and Peng, S.P.: Graphene-reinforced mechanical properties of calcium silicate scaffolds by laser sintering. RSC Adv. 4, 1278212788 (2014).CrossRefGoogle Scholar
23. Wu, C., Fan, W., Zhou, Y., Luo, Y., Gelinsky, M., Chang, J., and Xiao, Y.: 3D-printing of highly uniform CaSiO3 ceramic scaffolds: preparation, characterization and in vivo osteogenesis. J. Mater. Chem. 22, 1228812295 (2012).CrossRefGoogle Scholar
24. Ryu, H.S., Lee, J.K., Kim, H., Hong, K.S., Kim, D.J., Lee, J.H., Lee, D.H., Chang, B.S., Lee, C.K., and Chung, S.S.: Novel bioactive and degradable glass ceramics with high mechanical strength in the CaO–SiO2–B2O3 system. J. Biomed. Mater. Res. 68A, 7989 (2004).CrossRefGoogle Scholar
25. Wu, C., Chang, J., Zhai, W., Ni, S., and Wang, J.: Porous akermanite scaffolds for bone tissue engineering: preparation, characterization, and in vitro studies. J. Biomed. Mater. Res. B: Appl. Biomater. 78B, 4755 (2006).CrossRefGoogle Scholar
26. Wu, C., Ramaswamy, Y., and Zreiqat, H.: Porous diopside (CaMgSi2O6) scaffold: a promising bioactive material for bone tissue engineering. Acta Biomater. 6, 22372245 (2010).Google Scholar
27. Wu, C., Chang, J., Zhai, W., and Ni, S.: A novel bioactive porous bredigite (Ca7MgSi4O16) scaffold with biomimetic apatite layer for bone tissue engineering. J. Mater. Sci: Mater. Med. 18, 857864 (2007).Google ScholarPubMed
28. Chen, C., Watkins-Curry, P., Smoak, M., Hogan, K., Deese, S., McCandless, G.T., Chan, J.Y., and Hayes, D.J.: Targeting calcium magnesium silicates for polycaprolactone/ceramic composite scaffolds. ACS Biomater. Sci. Eng. 1, 94102 (2015).CrossRefGoogle Scholar
29. Xie, K., Zhang, L., Yang, X., Yang, G., Wang, X., Zhang, L., Xu, S., Shao, H., He, Y., Fu, J., and Gou, Z.: Preparation and characterization of low-temperature sintered 45S5 bioactive glass-ceramics analogues. Biomed. Glass 1, 8193 (2015).Google Scholar
30. Shao, H., Yang, X., He, Y., Fu, J., Liu, L., Zhang, L., Yang, G., Gao, C., and Gou, Z.: 3D printed bioactive glass-reinforced bioceramic scaffolds: sintering, microstructure and mechanical behavior. Biofabrication 7, 035010 (2015).Google Scholar
31. Champio, E.: Sintering of calcium phosphate bioceramics. Acta Biomater. 9, 58555875 (2013).Google Scholar
32. Long, L.H., Chen, L.D., Bai, S.Q., Chang, J., and Lin, K.L.: Preparation of dense-CaSiO3 ceramic with high mechanical strength and HAp formation ability in simulated body fluid. J. Eur. Ceram. Soc. 26, 17011706 (2006).CrossRefGoogle Scholar
33. Nadernezhad, A., Moztarzadeh, F., Hafezi, M., and Barzegar-Bafrooei, H.: Two step sintering of a novel calcium magnesium silicate bioceramic: sintering parameters and mechanical characterization. J. Eur. Ceram. Soc. 34, 40014009 (2014).Google Scholar
34. Land, T.A., Martin, T.L., Potapenko, S., Palmore, G.T., and De Yoreo, J.J.: Recovery of surfaces from impurity poisoning during crystal growth. Nature 399, 442445 (1999).Google Scholar
Supplementary material: File

Xie supplementary material S1

Xie supplementary material

Download Xie supplementary material S1(File)
File 3.8 MB