Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T21:50:36.893Z Has data issue: false hasContentIssue false

Toward bioimplantable and biocompatible flexible energy harvesters using piezoelectric ceramic materials

Published online by Cambridge University Press:  25 June 2020

Chang Kyu Jeong*
Affiliation:
Division of Advanced Materials Engineering, Jeonbuk National University, Jeonju, Jeonbuk54896, Republic of Korea Hydrogen and Fuel Cell Research Center, Jeonbuk National University, Jeonju, Jeonbuk54896, Republic of Korea Department of Energy Storage/Conversion Engineering, Jeonbuk National University, Jeonju, Jeonbuk54896, Republic of Korea
*
Address all correspondence to Chang Kyu Jeong at ckyu@jbnu.ac.kr
Get access

Abstract

This article presents a comprehensive overview of currently available research on bioimplantable energy harvesters, with a specific focus on their fabrication and issue of biocompatibility. Both the achievements and limitations of the field are pointed out from the standpoint of materials science and engineering as directions for future research. Particular attention is paid to the controversy over the use of lead-based or lead-free piezoelectric ceramics in biomedical applications, which is closely related to different temporalities of research on biological conditions. This report is intended to serve as a reference guide for developing the next generation of piezoelectric biomedical devices.

Type
Prospective Articles
Copyright
Copyright © Materials Research Society, 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Connolly, S.J. and Yusuf, S.: Evaluation of the implantable cardioverter defibrillator in survivors of cardiac arrest: the need for randomized trials. Am. J. Cardiol. 69, 959 (1992).CrossRefGoogle ScholarPubMed
Meng, E. and Hoang, T.: MEMS-enabled implantable drug infusion pumps for laboratory animal research, preclinical, and clinical applications. Adv. Drug Deliv. Rev. 64, 1628 (2012).CrossRefGoogle ScholarPubMed
Miller, M.A., Neuzil, P., Dukkipati, S.R., and Reddy, V.Y.: Leadless cardiac pacemakers. J. Am. Coll. Cardiol. 66, 1179 (2015).CrossRefGoogle ScholarPubMed
Bazaka, K. and Jacob, M.: Implantable devices: issues and challenges. Electronics 2, 1 (2012).CrossRefGoogle Scholar
Wang, Z.L., Wang, X., Song, J., Liu, J., and Gao, Y.: Piezoelectric nanogenerators for self-powered nanodevices. IEEE Pervasive Comput. 7, 49 (2008).CrossRefGoogle Scholar
Qi, Y. and McAlpine, M.C.: Nanotechnology-enabled flexible and biocompatible energy harvesting. Energy Environ. Sci. 3, 1275 (2010).CrossRefGoogle Scholar
Starner, T.: Human-powered wearable computing. IBM Syst. J. 35, 618 (1996).CrossRefGoogle Scholar
Roundy, S., Leland, E.S., Baker, J., Carleton, E., Reilly, E., Lai, E., Otis, B., Rabaey, J.M., Sundararajan, V., and Wright, P.K.: Improving power output for vibration-based energy scavengers. IEEE Pervasive Comput. 4, 28 (2005).CrossRefGoogle Scholar
Wang, Z.L.: Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242 (2006).CrossRefGoogle ScholarPubMed
Han, S.A., Kim, T.-H., Kim, S.K., Lee, K.H., Park, H.-J., Lee, J.-H., and Kim, S.-W.: Point-defect-passivated MoS2 nanosheet-based high performance piezoelectric nanogenerator. Adv. Mater. 30, 1800342 (2018).CrossRefGoogle ScholarPubMed
Won, S.S., Seo, H., Kawahara, M., Glinsek, S., Lee, J., Kim, Y., Jeong, C.K., Kingon, A.I., and Kim, S.-H.: Flexible vibrational energy harvesting devices using strain-engineered perovskite piezoelectric thin films. Nano Energy 55, 182 (2019).CrossRefGoogle Scholar
Han, J., Park, K.-I., and Jeong, C.: Dual-structured flexible piezoelectric film energy harvesters for effectively integrated performance. Sensors 19, 1444 (2019).CrossRefGoogle ScholarPubMed
Lee, B.-Y., Kim, D.H., Park, J., Park, K.-I., Lee, K.J., and Jeong, C.K.: Modulation of surface physics and chemistry in triboelectric energy harvesting technologies. Sci. Technol. Adv. Mater. 20, 758 (2019).CrossRefGoogle ScholarPubMed
Ahmed, A., Hassan, I., El-Kady, M.F., Radhi, A., Jeong, C.K., Selvaganapathy, P.R., Zu, J., Ren, S., Wang, Q., and Kaner, R.B.: Integrated triboelectric nanogenerators in the era of the internet of things. Adv. Sci. 6, 1802230 (2019).CrossRefGoogle ScholarPubMed
Park, D.Y., Joe, D.J., Kim, D.H., Park, H., Han, J.H., Jeong, C.K., Park, H., Park, J.G., Joung, B., and Lee, K.J.: Self-powered real-time arterial pulse monitoring using ultrathin epidermal piezoelectric sensors. Adv. Mater. 29, 1702308 (2017).CrossRefGoogle ScholarPubMed
Khan, U., Hinchet, R., Ryu, H., and Kim, S.-W.: Research update: nanogenerators for self-powered autonomous wireless sensors. APL Mater. 5, 073803 (2017).CrossRefGoogle Scholar
Yeo, H.G., Jung, J., Sim, M., Jang, J.E., and Choi, H.: Integrated piezoelectric aln thin film with SU-8/PDMS supporting layer for flexible sensor array. Sensors 20, 315 (2020).CrossRefGoogle ScholarPubMed
Liu, Q., Wang, X.-X., Song, W.-Z., Qiu, H.-J., Zhang, J., Fan, Z., Yu, M., and Long, Y.-Z.: Wireless single-electrode self-powered piezoelectric sensor for monitoring. ACS Appl. Mater. Interfaces 12, 8288 (2020).CrossRefGoogle ScholarPubMed
Niu, S., Wang, X., Yi, F., Zhou, Y.S., and Wang, Z.L.: A universal self-charging system driven by random biomechanical energy for sustainable operation of mobile electronics. Nat. Commun. 6, 8975 (2015).CrossRefGoogle ScholarPubMed
Wang, J., Li, S., Yi, F., Zi, Y., Lin, J., Wang, X., Xu, Y., and Wang, Z.L.: Sustainably powering wearable electronics solely by biomechanical energy. Nat. Commun. 7, 12744 (2016).CrossRefGoogle ScholarPubMed
Yang, P.-K., Lin, L., Yi, F., Li, X., Pradel, K.C., Zi, Y., Wu, C.-I., He, J.-H., Zhang, Y., and Wang, Z.L.: A flexible, stretchable and shape-adaptive approach for versatile energy conversion and self-powered biomedical monitoring. Adv. Mater. 27, 3817 (2015).CrossRefGoogle ScholarPubMed
Yang, R., Qin, Y., Li, C., Zhu, G., and Wang, Z.L.: Converting biomechanical energy into electricity by a muscle-movement-driven nanogenerator. Nano Lett. 9, 1201 (2009).CrossRefGoogle ScholarPubMed
Zhang, H., Zhang, X.-S., Cheng, X., Liu, Y., Han, M., Xue, X., Wang, S., Yang, F., Zhang, S.A.S.H., and Xu, Z.: A flexible and implantable piezoelectric generator harvesting energy from the pulsation of ascending aorta: in vitro and in vivo studies. Nano Energy 12, 296 (2015).CrossRefGoogle Scholar
Li, Z., Zhu, G., Yang, R., Wang, A.C., and Wang, Z.L.: Muscle-driven in vivo nanogenerator. Adv. Mater. 22, 2534 (2010).CrossRefGoogle ScholarPubMed
Yuan, M., Cheng, L., Xu, Q., Wu, W., Bai, S., Gu, L., Wang, Z., Lu, J., Li, H., Qin, Y., Jing, T., and Wang, Z.L.: Biocompatible nanogenerators through high piezoelectric coefficient 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 nanowires for in-vivo applications. Adv. Mater. 26, 7432 (2014).CrossRefGoogle Scholar
Dagdeviren, C., Yang, B.D., Su, Y., Tran, P.L., Joe, P., Anderson, E., Xia, J., Doraiswamy, V., Dehdashti, B., Feng, X., Lu, B., Poston, R., Khalpey, Z., Ghaffari, R., Huang, Y., Slepian, M.J., and Rogers, J.A.: Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm. Proc. Natl. Acad. Sci. USA 111, 1927 (2014).CrossRefGoogle ScholarPubMed
Lu, B., Chen, Y., Ou, D., Chen, H., Diao, L., Zhang, W., Zheng, J., Ma, W., Sun, L., and Feng, X.: Ultra-flexible piezoelectric devices integrated with heart to harvest the biomechanical energy. Sci. Rep. 5, 16065 (2015).CrossRefGoogle ScholarPubMed
Cheng, L., Yuan, M., Gu, L., Wang, Z., Qin, Y., Jing, T., and Wang, Z.L.: Wireless, power-free and implantable nanosystem for resistance-based biodetection. Nano Energy 15, 598 (2015).CrossRefGoogle Scholar
Cheng, X., Xue, X., Ma, Y., Han, M., Zhang, W., Xu, Z., Zhang, H., and Zhang, H.: Implantable and self-powered blood pressure monitoring based on a piezoelectric thinfilm: simulated, in vitro and in vivo studies. Nano Energy 22, 453 (2016).CrossRefGoogle Scholar
Yu, Y., Sun, H., Orbay, H., Chen, F., England, C.G., Cai, W., and Wang, X.: Biocompatibility and in vivo operation of implantable mesoporous PVDF-based nanogenerators. Nano Energy 27, 275 (2016).CrossRefGoogle ScholarPubMed
Zhou, J., Xu, N.S., and Wang, Z.L.: Dissolving behavior and stability of ZnO wires in biofluids: a study on biodegradability and biocompatibility of ZnO nanostructures. Adv. Mater. 18, 2432 (2006).CrossRefGoogle Scholar
Li, Z., Yang, R., Yu, M., Bai, F., Li, C., and Wang, Z.L.: Cellular level biocompatibility and biosafety of ZnO nanowires. J. Phys. Chem. C 112, 20114 (2008).CrossRefGoogle Scholar
Choi, K., Choi, W., Yu, C., and Park, Y.T.: Enhanced piezoelectric behavior of PVDF nanocomposite by AC dielectrophoresis alignment of ZnO nanowires. J. Nanomater. 2017, 1 (2017).CrossRefGoogle Scholar
Natta, L., Mastronardi, V.M., Guido, F., Algieri, L., Puce, S., Pisano, F., Rizzi, F., Pulli, R., Qualtieri, A., and De Vittorio, M.: Soft and flexible piezoelectric smart patch for vascular graft monitoring based on aluminum nitride thin film. Sci. Rep. 9, 8392 (2019).CrossRefGoogle ScholarPubMed
Lamanna, L., Rizzi, F., Guido, F., Algieri, L., Marras, S., Mastronardi, V.M., Qualtieri, A., and De Vittorio, M.: Flexible and transparent aluminum-nitride-based surface-acoustic-wave device on polymeric polyethylene naphthalate. Adv. Electron. Mater. 5, 1900095 (2019).CrossRefGoogle Scholar
Algieri, L., Todaro, M.T., Guido, F., Mastronardi, V., Desmaële, D., Qualtieri, A., Giannini, C., Sibillano, T., and De Vittorio, M.: Flexible piezoelectric energy-harvesting exploiting biocompatible AlN thin films grown onto spin-coated polyimide layers. ACS Appl. Energy Mater. 1, 5203 (2018).Google Scholar
Abels, C., Mastronardi, V., Guido, F., Dattoma, T., Qualtieri, A., Megill, W., De Vittorio, M., and Rizzi, F.: Nitride-based materials for flexible mems tactile and flow sensors in robotics. Sensors 17, 1080 (2017).CrossRefGoogle ScholarPubMed
Bowen, C.R., Kim, H.A., Weaver, P.M., and Dunn, S.: Piezoelectric and ferroelectric materials and structures for energy harvesting applications. Energy Environ. Sci. 7, 25 (2014).CrossRefGoogle Scholar
Park, K.-I., Xu, S., Liu, Y., Hwang, G.-T., Kang, S.-J.L., Wang, Z.L., and Lee, K.J.: Piezoelectric BaTiO3 thin film nanogenerator on plastic substrates. Nano Lett. 10, 4939 (2010).CrossRefGoogle ScholarPubMed
Chen, X., Xu, S., Yao, N., and Shi, Y.: 1.6 V Nanogenerator for mechanical energy harvesting using PZT nanofibers. Nano Lett. 10, 2133 (2010).CrossRefGoogle ScholarPubMed
Qi, Y., Kim, J., Nguyen, T.D., Lisko, B., Purohit, P.K., and McAlpine, M.C.: Enhanced piezoelectricity and stretchability in energy harvesting devices fabricated from buckled PZT ribbons. Nano Lett. 11, 1331 (2011).CrossRefGoogle ScholarPubMed
Hwang, G.-T., Park, H., Lee, J.-H., Oh, S., Park, K.-I., Byun, M., Park, H., Ahn, G., Jeong, C.K., No, K., Kwon, H., Lee, S.-G., Joung, B., and Lee, K.J.: Self-powered cardiac pacemaker enabled by flexible single crystalline PMN-PT piezoelectric energy harvester. Adv. Mater. 26, 4880 (2014).CrossRefGoogle ScholarPubMed
Hwang, G.-T., Kim, Y., Lee, J.-H., Oh, S., Jeong, C.K., Park, D.Y., Ryu, J., Kwon, H., Lee, S.-G., Joung, B., Kim, D., and Lee, K.J.: Self-powered deep brain stimulation via a flexible PIMNT energy harvester. Energy Environ. Sci. 8, 2677 (2015).CrossRefGoogle Scholar
Kim, D.H., Shin, H.J., Lee, H., Jeong, C.K., Park, H., Hwang, G.-T., Lee, H.-Y., Joe, D.J., Han, J.H., Lee, S.H., Kim, J., Joung, B., and Lee, K.J.: In vivo self-powered wireless transmission using biocompatible flexible energy harvesters. Adv. Funct. Mater. 27, 1700341 (2017).CrossRefGoogle Scholar
Hong, C.-H., Kim, H.-P., Choi, B.-Y., Han, H.-S., Son, J.S., Ahn, C.W., and Jo, W.: Lead-free piezoceramics – where to move on? J. Materiomics 2, 1 (2016).CrossRefGoogle Scholar
Rödel, J., Jo, W., Seifert, K.T.P., Anton, E.-M., Granzow, T., and Damjanovic, D.: Perspective on the development of lead-free piezoceramics. J. Am. Ceram. Soc. 92, 1153 (2009).CrossRefGoogle Scholar
Inaoka, T., Shintaku, H., Nakagawa, T., Kawano, S., Ogita, H., Sakamoto, T., Hamanishi, S., Wada, H., and Ito, J.: Piezoelectric materials mimic the function of the cochlear sensory epithelium. Proc. Natl. Acad. Sci. USA 108, 18390 (2011).CrossRefGoogle ScholarPubMed
Wang, Y.R., Zheng, J.M., Ren, G.Y., Zhang, P.H., and Xu, C.: A flexible piezoelectric force sensor based on PVDF fabrics. Smart Mater. Struct. 20, 045009 (2011).CrossRefGoogle Scholar
Jeong, C.K., Hyeon, D.Y., Hwang, G.-T., Lee, G.-J., Lee, M.-K., Park, J.-J., and Park, K.-I.: Nanowire-percolated piezoelectric copolymer-based highly transparent and flexible self-powered sensors. J. Mater. Chem. A 7, 25481 (2019).CrossRefGoogle Scholar
Zhang, Y., Zhu, W., Jeong, C.K., Sun, H., Yang, G., Chen, W., and Wang, Q.: A microcube-based hybrid piezocomposite as a flexible energy generator. RSC Adv. 7, 32502 (2017).CrossRefGoogle Scholar
Laroche, G., Marois, Y., Guidoin, R., King, M.W., Martin, L., How, T., and Douville, Y.: Polyvinylidene fluoride (PVDF) as a biomaterial: from polymeric raw material to monofilament vascular suture. J. Biomed. Mater. Res. 29, 1525 (1995).CrossRefGoogle ScholarPubMed
Zhang, Q.M.: Giant electrostriction and relaxor ferroelectric behavior in electron-irradiated poly(vinylidene fluoride-trifluoroethylene) copolymer. Science 280, 2101 (1998).CrossRefGoogle ScholarPubMed
Xu, H., Cheng, Z.-Y., Olson, D., Mai, T., Zhang, Q.M., and Kavarnos, G.: Ferroelectric and electromechanical properties of poly(vinylidene-fluoride–trifluoroethylene–chlorotrifluoroethylene) terpolymer. Appl. Phys. Lett. 78, 2360 (2001).CrossRefGoogle Scholar
Bar-Cohen, Y. and Zhang, Q.: Electroactive polymer actuators and sensors. MRS Bull. 33, 173 (2008).CrossRefGoogle Scholar
Kim, H., Manriquez, L.C.D., Islam, M.T., Chavez, L.A., Regis, J.E., Ahsan, M.A., Noveron, J.C., Tseng, T.-L.B., and Lin, Y.: 3D printing of polyvinylidene fluoride/photopolymer resin blends for piezoelectric pressure sensing application using the stereolithography technique. MRS Commun. 9, 1115 (2019).CrossRefGoogle Scholar
Li, J., Kang, L., Yu, Y., Long, Y., Jeffery, J.J., Cai, W., and Wang, X.: Study of long-term biocompatibility and bio-safety of implantable nanogenerators. Nano Energy 51, 728 (2018).CrossRefGoogle ScholarPubMed
Katsouras, I., Asadi, K., Li, M., van Driel, T.B., Kjær, K.S., Zhao, D., Lenz, T., Gu, Y., Blom, P.W.M., Damjanovic, D., Nielsen, M.M., and de Leeuw, D.M.: The negative piezoelectric effect of the ferroelectric polymer poly(vinylidene fluoride). Nat. Mater. 15, 78 (2016).CrossRefGoogle Scholar
Liu, Y., Aziguli, H., Zhang, B., Xu, W., Lu, W., Bernholc, J., and Wang, Q.: Ferroelectric polymers exhibiting behaviour reminiscent of a morphotropic phase boundary. Nature 562, 96 (2018).CrossRefGoogle ScholarPubMed
Liu, Y., Zhang, B., Haibibu, A., Xu, W., Han, Z., Lu, W., Bernholc, J., and Wang, Q.: Insights into the morphotropic phase boundary in ferroelectric polymers from the molecular perspective. J. Phys. Chem. C 123, 8727 (2019).CrossRefGoogle Scholar
Liu, Y., Han, Z., Xu, W., Haibibu, A., and Wang, Q.: Composition-dependent dielectric properties of poly(vinylidene fluoride-trifluoroethylene)s near the morphotropic phase boundary. Macromolecules 52, 6741 (2019).CrossRefGoogle Scholar
Liu, Y. and Wang, Q.: Ferroelectric polymers exhibiting negative longitudinal piezoelectric coefficient: progress and prospects. Adv. Sci. 7, 1902468 (2020).CrossRefGoogle ScholarPubMed
Qiu, C., Wang, B., Zhang, N., Zhang, S., Liu, J., Walker, D., Wang, Y., Tian, H., Shrout, T.R., Xu, Z., Chen, L.-Q., and Li, F.: Transparent ferroelectric crystals with ultrahigh piezoelectricity. Nature 577, 350 (2020).CrossRefGoogle ScholarPubMed
Pan, H., Li, F., Liu, Y., Zhang, Q., Wang, M., Lan, S., Zheng, Y., Ma, J., Gu, L., Shen, Y., Yu, P., Zhang, S., Chen, L.-Q., Lin, Y.-H., and Nan, C.-W.: Ultrahigh–energy density lead-free dielectric films via polymorphic nanodomain design. Science 365, 578 (2019).CrossRefGoogle ScholarPubMed
Li, F., Lin, D., Chen, Z., Cheng, Z., Wang, J., Li, C., Xu, Z., Huang, Q., Liao, X., Chen, L.-Q., Shrout, T.R., and Zhang, S.: Ultrahigh piezoelectricity in ferroelectric ceramics by design. Nat. Mater. 17, 349 (2018).CrossRefGoogle ScholarPubMed
Datta, A., Choi, Y.S., Chalmers, E., Ou, C., and Kar-Narayan, S.: Piezoelectric Nylon-11 nanowire arrays grown by template wetting for vibrational energy harvesting applications. Adv. Funct. Mater. 27, 1604262 (2017).CrossRefGoogle Scholar
Chae, I., Jeong, C.K., Ounaies, Z., and Kim, S. H.: Review on electromechanical coupling properties of biomaterials. ACS Appl. Bio. Mater. 1, 936 (2018).CrossRefGoogle Scholar
Zhang, Y., Jeong, C.K., Wang, J., Sun, H., Li, F., Zhang, G., Chen, L.-Q., Zhang, S., Chen, W., and Wang, Q.: Flexible energy harvesting polymer composites based on biofibril-templated 3-dimensional interconnected piezoceramics. Nano Energy 50, 35 (2018).CrossRefGoogle Scholar
Zhang, Y., Jeong, C.K., Yang, T., Sun, H., Chen, L.-Q., Zhang, S., Chen, W., and Wang, Q.: Bioinspired elastic piezoelectric composites for high-performance mechanical energy harvesting. J. Mater. Chem. A 6, 14546 (2018).CrossRefGoogle Scholar
Baek, C., Wang, J.E., Ryu, S., Kim, J.-H., Jeong, C.K., Park, K.-I., and Kim, D.K.: Facile hydrothermal synthesis of BaZrxTi1−x O3 nanoparticles and their application to a lead-free nanocomposite generator. RSC Adv. 7, 2851 (2017).CrossRefGoogle Scholar
Won, S.S., Kawahara, M., Ahn, C.W., Lee, J., Lee, J., Jeong, C.K., Kingon, A.I., and Kim, S.: Lead-free Bi0.5(Na0.78K0.22)TiO3 nanoparticle filler–elastomeric composite films for paper-based flexible power generators. Adv. Electron. Mater. 6, 1900950 (2020).CrossRefGoogle Scholar
Park, S., Peddigari, M., Kim, J.H., Kim, E., Hwang, G.-T., Kim, J.-W., Ahn, C.-W., Choi, J.-J., Hahn, B.-D., Choi, J.-H., Yoon, W.-H., Park, D.-S., Park, K.-I., Jeong, C.K., Lee, J.W., and Min, Y.: Selective phase control of dopant-free potassium sodium niobate perovskites in solution. Inorg. Chem. 59, 3042 (2020).CrossRefGoogle ScholarPubMed
Wu, H., Zhang, Y., Wu, J., Wang, J., and Pennycook, S.J.: Microstructural origins of high piezoelectric performance: a pathway to practical lead-free materials. Adv. Funct. Mater. 29, 1902911 (2019).CrossRefGoogle Scholar
Jeong, C.K., Han, J.H., Palneedi, H., Park, H., Hwang, G.-T., Joung, B., Kim, S.-G., Shin, H.J., Kang, I.-S., Ryu, J., and Lee, K.J.: Comprehensive biocompatibility of nontoxic and high-output flexible energy harvester using lead-free piezoceramic thin film. APL Mater. 5, 074102 (2017).CrossRefGoogle Scholar
Ibn-Mohammed, T., Koh, S.C.L., Reaney, I.M., Sinclair, D.C., Mustapha, K.B., Acquaye, A., and Wang, D.: Are lead-free piezoelectrics more environmentally friendly? MRS Commun. 7, 1 (2017).CrossRefGoogle Scholar
Park, K.-I., Son, J.H., Hwang, G.-T., Jeong, C.K., Ryu, J., Koo, M., Choi, I., Lee, S.H., Byun, M., Wang, Z.L., and Lee, K.J.: Highly-efficient, flexible piezoelectric PZT thin film nanogenerator on plastic substrates. Adv. Mater. 26, 2514 (2014).CrossRefGoogle ScholarPubMed
Shrout, T.R. and Zhang, S.: Lead-free piezoelectric ceramics: alternatives for PZT? J. Electroceramics 19, 113 (2007).CrossRefGoogle Scholar
Maeder, M.D., Damjanovic, D., and Setter, N.: Lead free piezoelectric materials. J. Electroceramics 13, 385 (2004).CrossRefGoogle Scholar
Wu, J., Xiao, D., and Zhu, J.: Potassium–sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries. Chem. Rev. 115, 2559 (2015).CrossRefGoogle ScholarPubMed
Takenaka, T., Nagata, H., Hiruma, Y., Yoshii, Y., and Matumoto, K.: Lead-free piezoelectric ceramics based on perovskite structures. J. Electroceramics 19, 259 (2007).CrossRefGoogle Scholar
Yang, C. and Suo, Z.: Hydrogel ionotronics. Nat. Rev. Mater. 3, 125 (2018).CrossRefGoogle Scholar
Yeo, H.G., Ma, X., Rahn, C., and Trolier-McKinstry, S.: Efficient piezoelectric energy harvesters utilizing (001) textured bimorph PZT films on flexible metal foils. Adv. Funct. Mater. 26, 5940 (2016).CrossRefGoogle Scholar
Won, S.S., Lee, J., Venugopal, V., Kim, D.-J., Lee, J., Kim, I.W., Kingon, A.I., and Kim, S.-H.: Lead-free Mn-doped (K0.5, Na0.5)NbO3 piezoelectric thin films for MEMS-based vibrational energy harvester applications. Appl. Phys. Lett. 108, 232908 (2016).CrossRefGoogle Scholar
Yeo, H.G., Xue, T., Roundy, S., Ma, X., Rahn, C., and Trolier-McKinstry, S.: Strongly (001) oriented bimorph PZT film on metal foils grown by RF-sputtering for wrist-worn piezoelectric energy harvesters. Adv. Funct. Mater. 28, 1801327 (2018).CrossRefGoogle Scholar
Ko, Y.J., Kim, D.Y., Won, S.S., Ahn, C.W., Kim, I.W., Kingon, A.I., Kim, S.-H., Ko, J.-H., and Jung, J.H.: Flexible Pb(Zr0.52Ti0.48)O3 films for a hybrid piezoelectric-pyroelectric nanogenerator under harsh environments. ACS Appl. Mater. Interfaces 8, 6504 (2016).CrossRefGoogle Scholar
Zhang, H. and Chiao, M.: Anti-fouling coatings of poly(dimethylsiloxane) devices for biological and biomedical applications. J. Med. Biol. Eng. 35, 143 (2015).CrossRefGoogle ScholarPubMed
Wong, I. and Ho, C.-M.: Surface molecular property modifications for poly(dimethylsiloxane) (PDMS) based microfluidic devices. Microfluid. Nanofluidics 7, 291 (2009).CrossRefGoogle ScholarPubMed
Makamba, H., Kim, J.H., Lim, K., Park, N., and Hahn, J.H.: Surface modification of poly(dimethylsiloxane) microchannels. Electrophoresis 24, 3607 (2003).CrossRefGoogle ScholarPubMed
Yao, X., Liu, J., Yang, C., Yang, X., Wei, J., Xia, Y., Gong, X., and Suo, Z.: Hydrogel paint. Adv. Mater. 31, 1903062 (2019).CrossRefGoogle ScholarPubMed
Brassart, L., Liu, Q., and Suo, Z.: Mixing by shear, dilation, swap, and diffusion. J. Mech. Phys. Solids 112, 253 (2018).CrossRefGoogle Scholar
Lee, G.-J., Lee, M.-K., Park, J.-J., Hyeon, D.Y., Jeong, C.K., and Park, K.-I.: Piezoelectric energy harvesting from two-dimensional boron nitride nanoflakes. ACS Appl. Mater. Interfaces 11, 37920 (2019).CrossRefGoogle ScholarPubMed
Seo, J., Kim, Y., Park, W.Y., Son, J.Y., Jeong, C.K., Kim, H., and Kim, W.-H.: Out-of-plane piezoresponse of monolayer MoS2 on plastic substrates enabled by highly uniform and layer-controllable CVD. Appl. Surf. Sci. 487, 1356 (2019).CrossRefGoogle Scholar
Zhang, Y., Sun, H., and Jeong, C.K.: Biomimetic porifera skeletal structure of lead-free piezocomposite energy harvesters. ACS Appl. Mater. Interfaces 10, 35539 (2018).CrossRefGoogle ScholarPubMed
Karan, S.K., Maiti, S., Paria, S., Maitra, A., Si, S.K., Kim, J.K., and Khatua, B.B.: A new insight towards eggshell membrane as high energy conversion efficient bio-piezoelectric energy harvester. Mater. Today Energy 9, 114 (2018).CrossRefGoogle Scholar
Ghosh, S.K., and Mandal, D.: Bio-assembled, piezoelectric prawn shell made self-powered wearable sensor for non-invasive physiological signal monitoring. Appl. Phys. Lett 110, 123701 (2017).CrossRefGoogle Scholar
Maiti, S., Kumar Karan, S., Lee, J., Kumar Mishra, A., Bhusan Khatua, B., and Kon Kim, J.: Bio-waste onion skin as an innovative nature-driven piezoelectric material with high energy conversion efficiency. Nano Energy 42, 282 (2017).CrossRefGoogle Scholar
Ghosh, S.K. and Mandal, D.: Efficient natural piezoelectric nanogenerator: electricity generation from fish swim bladder. Nano Energy 28, 356 (2016).CrossRefGoogle Scholar
Sencadas, V., Garvey, C., Mudie, S., Kirkensgaard, J.J.K., Gouadec, G., and Hauser, S.: Electroactive properties of electrospun silk fibroin for energy harvesting applications. Nano Energy 66, 104106 (2019).CrossRefGoogle Scholar
Maitra, A., Karan, S.K., Paria, S., Das, A.K., Bera, R., Halder, L., Si, S.K., Bera, A., and Khatua, B.B.: Fast charging self-powered wearable and flexible asymmetric supercapacitor power cell with fish swim bladder as an efficient natural bio-piezoelectric separator. Nano Energy 40, 633 (2017).CrossRefGoogle Scholar
Alam, M.M. and Mandal, D.: Native cellulose microfiber-based hybrid piezoelectric generator for mechanical energy harvesting utility. ACS Appl. Mater. Interfaces 8, 1555 (2016).CrossRefGoogle ScholarPubMed
Karan, S.K., Maiti, S., Kwon, O., Paria, S., Maitra, A., Si, S.K., Kim, Y., Kim, J.K., and Khatua, B.B.: Nature driven spider silk as high energy conversion efficient bio-piezoelectric nanogenerator. Nano Energy 49, 655 (2018).CrossRefGoogle Scholar