Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T21:57:34.159Z Has data issue: false hasContentIssue false

Total ionizing dose-hardened carbon nanotube thin-film transistors with silicon oxynitride gate dielectrics

Published online by Cambridge University Press:  25 August 2011

C.D. Cress*
Affiliation:
Electronics Science and Technology Division, United States Naval Research Laboratory, Washington, District of Columbia 20375, USA
J.J. McMorrow
Affiliation:
Global Strategies Group (North America) Inc., Crofton, Maryland 21114, USA
J.T. Robinson
Affiliation:
Electronics Science and Technology Division, United States Naval Research Laboratory, Washington, District of Columbia 20375, USA
A.L. Friedman
Affiliation:
Electronics Science and Technology Division, United States Naval Research Laboratory, Washington, District of Columbia 20375, USA; Materials Science and Technology Division, United States Naval Research Laboratory, Washington, District of Columbia 20375, USA
H.L. Hughes
Affiliation:
Electronics Science and Technology Division, United States Naval Research Laboratory, Washington, District of Columbia 20375, USA
B.D. Weaver
Affiliation:
Electronics Science and Technology Division, United States Naval Research Laboratory, Washington, District of Columbia 20375, USA
B.J. Landi
Affiliation:
Department of Chemical and Biomedical Engineering, Rochester Institute of Technology, Rochester, New York 14623, USA
*
Address all correspondence to C.D. Cress atcarbon.nanoelectronics@nrl.navy.mil
Get access

Abstract

We investigate the radiation response of single-walled carbon nanotube (SWCNT) thin-film transistors fabricated with 23 nm silicon oxynitride gate dielectric layers, for total ionizing doses (TIDs) of Co-60 gamma irradiation up to 2 Mrad(Si). Irradiations with ±1 MV/cm across the gate dielectric have little effect on the threshold voltage, yielding shifts of less than ±0.25 V and no detrimental effect on SWCNT mobility or maximum drain current. This illustrates the need to consider the total device material composition when investigating the radiation response of carbon nanoelectronics and substantiates the applicability of SWCNT-based nanoelectronics for use in high TID environments.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Cress, C.D., Schauerman, C.M., Landi, B.J., Messenger, S.R., Raffaelle, R.P., and Walters, R.J.: Radiation effects in single-walled carbon nanotube papers. J. Appl. Phys. 107, 014316 (2010).CrossRefGoogle Scholar
2.Wang, C., Ryu, K., Badmaev, A., Zhang, J., and Zhou, C.: Metal contact engineering and registration-free fabrication of complementary metal-oxide semiconductor integrated circuits using aligned carbon nanotubes. ACS Nano 5, 11471153 (2011).CrossRefGoogle ScholarPubMed
3.Nougaret, L., Happy, H., Dambrine, G., Derycke, V., Bourgoin, J-P., Green, A.A., and Hersam, M.C.: 80 GHz field-effect transistors produced using high purity semiconducting single-walled carbon nanotubes. Appl. Phys. Lett. 94, 243505 (2009).CrossRefGoogle Scholar
4.Engel, M., Small, J., Steiner, M., Freitag, M., Green, A., Hersam, M., and Avouris, P.: Thin film nanotube transistors based on self-assembled, aligned, semiconducting carbon nanotube arrays. ACS Nano 2, 24452452 (2008).CrossRefGoogle ScholarPubMed
5.Rutherglen, C., Jain, D., and Burke, P.: Nanotube electronics for radiofrequency applications. Nat. Nanotechnol. 4, 811 (2009).CrossRefGoogle ScholarPubMed
6.Zhang, Z., Wang, S., Wang, Z., Ding, L., Pei, T., Hu, Z., Liang, X., Chen, Q., Li, Y., and Peng, L-M.: Almost perfectly symmetric SWCNT-based CMOS devices and scaling. ACS Nano 3, 37813787 (2009).CrossRefGoogle ScholarPubMed
7.Oldham, T. and McLean, F.: Total ionizing dose effects in MOS oxides and devices. IEEE Trans. Nucl. Sci. 50, 483499 (2003).CrossRefGoogle Scholar
8.Tang, X., Yang, Y., Kim, W., Wang, Q., Qi, P., and Dai, H.: Measurement of ionizing radiation using carbon nanotube field effect transistor. Phys. Med. Biol. 50, N23N31 (2005).CrossRefGoogle ScholarPubMed
9.Cress, C., McMorrow, J., Robinson, J., Friedman, A., and Landi, B.: Radiation effects in single-walled carbon nanotube thin-film-transistors. IEEE Trans. Nucl. Sci. 57, 30403045 (2010).Google Scholar
10.Liao, J-H., Hsieh, J-Y., Lin, H-J., Tang, W-Y., Chiang, C-L., Lo, Y.-S., Wu, T-B., Yang, L-W., Yang, T., Chen, K-C., and Lu, C-Y.: Physical and electrical characteristics of silicon oxynitride films with various refractive indices. J. Phys. D: Appl. Phys. 42, 175102 (2009).CrossRefGoogle Scholar
11.Hughes, H. and Benedetto, J.: Radiation effects and hardening of MOS technology: devices and circuits. IEEE Trans. Nucl. Sci. 50, 500521 (2003).CrossRefGoogle Scholar
12.Le Thanh, V., Bouchier, D., and Débarre, D.: Fabrication of SiGe quantum dots on a Si(100) surface. Phys. Rev. B 56, 1050510510 (1997).CrossRefGoogle Scholar
13.Pietsch, G.: Hydrogen on Si: Ubiquitous surface termination after wet-chemical processing. Appl. Phys A: Mater. Sci Process 60, 347363 (1995).CrossRefGoogle Scholar
14.Oldham, T.: Ionizing Radiation Effects in MOS Oxides (World Scientific, Singapore, 1999), p. 17.Google Scholar