Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T22:28:02.628Z Has data issue: false hasContentIssue false

Synthesis, physics, and applications of ferroelectric nanomaterials

Published online by Cambridge University Press:  03 March 2015

Mark J. Polking
Affiliation:
Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138
A. Paul Alivisatos*
Affiliation:
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720; Department of Chemistry, University of California, Berkeley, California 94720
Ramamoorthy Ramesh*
Affiliation:
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720; Department of Materials Science and Engineering, University of California, Berkeley, California 94720
*
Address all correspondence to A. Paul Alivisatos, Ramamoorthy Ramesh atalivis@berkeley.edu; rramesh@berkeley.edu
Address all correspondence to A. Paul Alivisatos, Ramamoorthy Ramesh atalivis@berkeley.edu; rramesh@berkeley.edu
Get access

Abstract

Improvement of both solution and vapor-phase synthetic techniques for nanoscale ferroelectrics has fueled progress in fundamental understanding of the polar phase at reduced dimensions, and this physical insight has pushed the boundaries of ferroelectric phase stability and polarization switching to sub-10 nm dimensions. The development and characterization of new ferroelectric nanomaterials has opened new avenues toward future nonvolatile memories, devices for energy storage and conversion, biosensors, and many other applications. This prospective will highlight recent progress on the synthesis, fundamental understanding, and applications of zero- and one-dimensional ferroelectric nanomaterials and propose new directions for future study in all three areas.

Type
Prospective Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Scott, J.F.: Applications of modern ferroelectrics. Science 315, 954 (2007).Google Scholar
2.Scott, J.F. and Paz de Araujo, C.A.: Ferroelectric memories. Science 246, 4936 (1989).Google Scholar
3.Wang, Z.L.: Self-powered nanotech. Sci. Am. 82, 82 (2008).Google Scholar
4.Yang, S.Y., Seidel, J., Byrnes, S.J., Shafer, P., Yang, C.-H., Rossell, M.D., Yu, P., Chu, Y.-H., Scott, J.F., Ager, J.W. III, Martin, L.W., and Ramesh, R.: Above-bandgap voltages from ferroelectric photovoltaic devices. Nat. Nanotechnol. 5, 143 (2010).Google Scholar
5.Nguyen, T.D., Deshmukh, N., Nagarah, J.M., Kramer, T., Purohit, P.K., Berry, M.J., and McAlpine, M.C.: Piezoelectric nanoribbons for monitoring cellular deformations. Nat. Nanotechnol. 7, 587 (2012).Google Scholar
6.Kittel, C.: Introduction to Solid State Physics (John Wiley and Sons, Hoboken, NJ, 2005).Google Scholar
7.Rabe, K.M., Ahn, C.H., and Triscone, J.-M.: Physics of Ferroelectrics: A Modern Perspective (Springer-Verlag, Berlin, Germany, 2007).Google Scholar
8.Lines, M.E. and Glass, A.M.: Principles and Applications of Ferroelectrics and Related Materials (Oxford University Press, New York, NY, 2001).CrossRefGoogle Scholar
9.Murray, C.B., Kagan, C.R., and Bawendi, M.G.: Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu. Rev. Mater. Sci. 30, 545 (2000).Google Scholar
10.Law, M., Goldberger, J., and Yang, P.: Semiconductor nanowires and nanotubes. Annu. Rev. Mater. Res. 34, 83 (2004).Google Scholar
11.Sun, S., Zeng, H., Robinson, D.B., Raoux, S., Rice, P.M., Wang, S.X., and Li, G.: Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. J. Am. Chem. Soc. 126, 273 (2004).Google Scholar
12.O'Brien, S., Brus, L., and Murray, C.B.: Synthesis of monodisperse nanoparticles of barium titanate: toward a generalized strategy of oxide nanoparticle synthesis. J. Am. Chem. Soc. 123, 12085 (2001).CrossRefGoogle Scholar
13.Urban, J.J., Yun, W.S., Gu, Q., and Park, H.: Synthesis of single-crystalline perovskite nanorods composed of barium titanate and strontium titanate. J. Am. Chem. Soc. 124, 1186 (2002).CrossRefGoogle ScholarPubMed
14.Polking, M.J., Zheng, H., Ramesh, R., and Alivisatos, A.P.: Controlled synthesis and size-dependent polarization domain structure of colloidal germanium telluride nanocrystals. J. Am. Chem. Soc. 133, 2044 (2011).Google Scholar
15.Varghese, J., Barth, S., Keeney, L., Whatmore, R.W., and Holmes, J.D.: Nanoscale ferroelectric and piezoelectric properties of Sb2S3 nanowire arrays. Nano Lett. 12, 868 (2012).Google Scholar
16.Page, K., Proffen, T., Niederberger, M., and Seshadri, R.: Probing local dipoles and ligand structure in BaTiO3 nanoparticles. Chem. Mater. 22, 4386 (2010).Google Scholar
17.Moon, J., Kerchner, J.A., Krarup, H., and Adair, J.H.: Hydrothermal synthesis of ferroelectric perovskites from chemically modified titanium isopropoxide and acetate salts. J. Mater. Res. 14, 425 (1999).Google Scholar
18.Mao, Y., Banerjee, S., and Wong, S.S.: Large-scale synthesis of single-crystalline perovskite nanostructures. J. Am. Chem. Soc. 125, 15718 (2003).Google Scholar
19.Urban, J.J., Ouyang, L., Jo, M.-H., Wang, D.S., and Park, H.: Synthesis of single-crystalline La1−xBaxMnO3 nanocubes with adjustable doping levels. Nano Lett. 4, 1547 (2004).CrossRefGoogle Scholar
20.Mohanty, D., Chaubey, G.S., Yourdkhani, A., Adireddy, S., Caruntu, G., and Wiley, J.B.: Synthesis and piezoelectric response of cubic and spherical LiNbO3 nanocrystals. RSC Adv. 2, 1913 (2012).Google Scholar
21.Ghosh, S., Dasgupta, S., Sen, A., and Maiti, H.S.: Low-temperature synthesis of nanosized bismuth ferrite by soft chemical route. J. Am. Ceram. Soc. 88, 1349 (2005).Google Scholar
22.Park, T.-J., Papaefthymiou, G.C., Viescas, A.J., Moodenbaugh, A.R., and Wong, S.S.: Size-dependent magnetic properties of single-crystalline multiferroic BiFeO3 nanoparticles. Nano Lett. 7, 766 (2007).Google Scholar
23.Zhou, Z., Tang, H., and Sodano, H.A.: Vertically aligned arrays of BaTiO3 nanowires. ACS Appl. Mater. Interfaces 5, 11894 (2013).CrossRefGoogle Scholar
24.Fujisawa, H., Kuri, R., Nakashima, S., Shimizu, M., Kotaka, Y., and Honda, K.: Synthesis of PbTiO3 nanotubes by metalorganic chemical vapor deposition. Jpn. J. Appl. Phys. 48, 09KA05 (2009).Google Scholar
25.Chen, Y.-Z., Liu, T.-H., Chen, C.-Y., Liu, C.-H., Chen, S.-Y., Wu, W.-W., Wang, Z.L., He, J.-H., Chu, Y.-H., and Chueh, Y.-L.: Taper PbZr0.2Ti0.8O3 nanowire arrays: from controlled growth by pulsed laser deposition to piezopotential measurements. ACS Nano 6, 2826 (2012).Google Scholar
26.Rørvik, P.M., Grande, T., and Einarsrud, M.-A.: Hierarchical PbTiO3 nanostructures grown on SrTiO3 substrates. Cryst. Growth Des. 9, 1979 (2009).Google Scholar
27.Wang, X., Zhuang, J., Peng, Q., and Li, Y.: A general strategy for nanocrystal synthesis. Nature 437, 121 (2005).Google Scholar
28.Yang, S. and Gao, L.: Controlled synthesis and self-assembly of CeO2 nanocubes. J. Am. Chem. Soc. 128, 9330 (2006).CrossRefGoogle ScholarPubMed
29.Nguyen, T.-D. and Do, T.-O.: General two-phase routes to synthesize colloidal metal oxide nanocrystals: simple synthesis and ordered self-assembly structures. J. Phys. Chem. C 113, 11204 (2009).Google Scholar
30.Adireddy, S., Lin, C., Cao, B., Zhou, W., and Caruntu, G.: Solution-based growth of monodisperse cube-like BaTiO3 colloidal nanocrystals. Chem. Mater. 22, 1946 (2010).CrossRefGoogle Scholar
31.Yu, D., Wu, J., Gu, Q., and Park, H.: Germanium telluride nanowires and nanohelices with memory-switching behavior. J. Am. Chem. Soc. 128, 8148 (2006).Google Scholar
32.Yang, R.B., Bachmann, J., Pippel, E., Berger, A., Woltersdorf, J., Gösele, U., and Nielsch, K.: Pulsed vapor-liquid-solid growth of antimony selenide and antimony sulfide nanowires. Adv. Mater. 21, 3170 (2009).Google Scholar
33.Scott, J.F. and Blinc, R.: Multiferroic magnetoelectric fluorides: why are there so many magnetic ferroelectrics? J. Phys.: Condens. Matter 23, 113202 (2011).Google Scholar
34.Ostrowski, A.D., Chan, E.M., Gargas, D.J., Katz, E.M., Han, G., Schuck, P.J., Milliron, D.J., and Cohen, B.E.: Controlled synthesis and single-particle imaging of bright, sub-10 nm lanthanide-doped upconverting nanocrystals. ACS Nano 6, 2686 (2012).Google Scholar
35.Zheng, H., Wang, J., Lofland, S.E., Ma, Z., Mohaddes-Ardabili, L., Zhao, T., Salamanca-Riba, L., Shinde, S.R., Ogale, S.B., Bai, F., Viehland, D., Jia, Y., Schlom, D.G., Wuttig, M., Roytburd, A., and Ramesh, R.: Multiferroic BaTiO3–CoFe2O4 nanostructures. Science 303, 661 (2004).Google Scholar
36.Kuo, H.-H., Chen, L., Ji, Y., Liu, H.-J., Chen, L.-Q., and Chu, Y.-H.: Tuning phase stability of complex oxide nanocrystals via conjugation. Nano Lett. 14, 3314 (2014).Google Scholar
37.Kwei, G.H., Lawson, A.C., Billinge, S.J.L., and Cheong, S.-W.: Structures of the ferroelectric phases of barium titanate. J. Phys. Chem. 97, 2368 (1993).Google Scholar
38.Zeches, R.J., Rossell, M.D., Zhang, J.X., Hatt, A.J., He, Q., Yang, C.-H., Kumar, A., Wang, C.H., Melville, A., Adamo, C., Sheng, G., Chu, Y.-H., Ihlefeld, J.F., Erni, R., Ederer, C., Gopalan, V., Chen, L.Q., Schlom, D.G., Spaldin, N.A., Martin, L.W., and Ramesh, R.: A strain-driven morphotropic phase boundary in BiFeO3. Science 326, 977 (2009).Google Scholar
39.Tolbert, S.H. and Alivisatos, A.P.: High-pressure structural transformations in semiconductor nanocrystals. Annu. Rev. Phys. Chem. 46, 595 (1995).Google Scholar
40.Sato, K., Abe, H., and Ohara, S.: Selective growth of monoclinic and tetragonal zirconia nanocrystals. J. Am. Chem. Soc. 132, 2538 (2010).CrossRefGoogle ScholarPubMed
41.Sun, S. and Murray, C.B.: Synthesis of monodisperse cobalt nanocrystals and their assembly into magnetic superlattices (invited). J. Appl. Phys. 85, 4325 (1999).Google Scholar
42.Louis, L., Gemeiner, P., Ponomareva, I., Bellaiche, L., Geneste, G., Ma, W., Setter, N., and Dkhil, B.: Low-symmetry phases in ferroelectric nanowires. Nano Lett. 10, 1177 (2010).Google Scholar
43.Wang, J., Neaton, J.B., Zheng, H., Nagarajan, V., Ogale, S.B., Liu, B., Viehland, D., Vaithyanathan, V., Schlom, D.G., Waghmare, U.V., Spaldin, N.A., Rabe, K.M., Wuttig, M., and Ramesh, R.: Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299, 1719 (2003).Google Scholar
44.Uchino, K., Sadanaga, E., and Hirose, T.: Dependence of the crystal structure on particle size in barium titanate. J. Am. Ceram. Soc. 72, 1555 (1989).Google Scholar
45.Smith, M.B., Page, K., Siegrist, T., Redmond, P.L., Walter, E.C., Seshadri, R., Brus, L.E., and Steigerwald, M.L.: Crystal structure and the paraelectric-to-ferroelectric phase transition of nanoscale BaTiO3. J. Am. Chem. Soc. 130, 6955 (2008).Google Scholar
46.Tripathi, S., Petkov, V., Selbach, S.M., Bergum, K., Einarsrud, M.-A., Grande, T., and Ren, Y.: Structural coherence and ferroelectric order in nanosized multiferroic YMnO3. Phys. Rev. B 86, 094101 (2012).CrossRefGoogle Scholar
47.Petkov, V., Gateshki, M., Niederberger, M., and Ren, Y.: Atomic-scale structure of nanocrystalline BaxSr1−xTiO3 (x = 1, 0.5, 0) by x-ray diffraction and the atomic pair distribution function technique. Chem. Mater. 18, 814 (2006).Google Scholar
48.Naumov, I.I., Bellaiche, L., and Fu, H.: Unusual phase transitions in ferroelectric nanodisks and nanorods. Nature 432, 737 (2004).CrossRefGoogle ScholarPubMed
49.Fu, H. and Bellaiche, L.: Ferroelectricity in barium titanate quantum dots and wires. Phys. Rev. Lett. 91, 257601 (2003).CrossRefGoogle ScholarPubMed
50.Frey, M.H. and Payne, D.A.: Grain-size effect on structure and phase transformations for barium titanate. Phys. Rev. B 54, 3158 (1996).Google Scholar
51.Fu, D., Suzuki, H., and Ishikawa, K.: Size-induced phase transition in PbTiO3 nanocrystals: raman scattering study. Phys. Rev. B 62, 3125 (2000).Google Scholar
52.Zhao, Z., Buscaglia, V., Viviani, M., Buscaglia, M.T., Mitoseriu, L., Testino, A., Nygren, M., Johnsson, M., and Nanni, P.: Grain-size effects on the ferroelectric behavior of dense nanocrystalline BaTiO3 ceramics. Phys. Rev. B 70, 024107 (2004).CrossRefGoogle Scholar
53.Schlag, S. and Eicke, H.-F.: Size driven phase transition in nanocrystalline BaTiO3. Solid State Commun. 91, 883 (1994).Google Scholar
54.Chattopadhyay, S., Ayyub, P., Palkar, V.R., and Multani, M.: Size-induced diffuse phase transition in the nanocrystalline ferroelectric PbTiO3. Phys. Rev. B 52, 13177 (1995).Google Scholar
55.Spanier, J.E., Kolpak, A.M., Urban, J.J., Grinberg, I., Ouyang, L., Yun, W.S., Rappe, A.M., and Park, H.: Ferroelectric phase transition in individual single-crystalline BaTiO3 nanowires. Nano Lett. 6, 735 (2006).Google Scholar
56.Shin, J., Nascimento, V.B., Geneste, G., Rundgren, J., Plummer, E.W., Dkhil, B., Kalinin, S.V., and Baddorf, A.P.: Atomistic screening mechanism of ferroelectric surfaces: an in situ study of the polar phase in ultrathin BaTiO3 films exposed to H2O. Nano Lett. 9, 3720 (2009).Google Scholar
57.Polking, M.J., Urban, J.J., Milliron, D.J., Zheng, H., Chan, E., Caldwell, M.A., Raoux, S., Kisielowski, C.F., Ager, J.W. III, Ramesh, R., and Alivisatos, A.P.: Size-dependent polar ordering in colloidal GeTe nanocrystals. Nano Lett. 11, 1147 (2011).CrossRefGoogle ScholarPubMed
58.Polking, M.J., Han, M.-G., Yourdkhani, A., Petkov, V., Kisielowski, C.F., Volkov, V.V., Zhu, Y., Caruntu, G., Alivisatos, A.P., and Ramesh, R.: Ferroelectric order in individual nanometre-scale crystals. Nat. Mater. 11, 700 (2012).Google Scholar
59.Schilling, A., Adams, T.B., Bowman, R.M., Gregg, J.M., Catalan, G., and Scott, J.F.: Scaling of domain periodicity with thickness measured in BaTiO3 single crystal lamellae and comparison with other ferroics. Phys. Rev. B 74, 024115 (2006).Google Scholar
60.Schilling, A., Byrne, D., Catalan, G., Webber, K.G., Genenko, Y.A., Wu, G.S., Scott, J.F., and Gregg, J.M.: Domains in ferroelectric nanodots. Nano Lett. 9, 3359 (2009).Google Scholar
61.Schilling, A., Bowman, R.M., Catalan, G., Scott, J.F., and Gregg, J.M.: Morphological control of polar orientation in single-crystal ferroelectric nanowires. Nano Lett. 7, 3787 (2007).Google Scholar
62.Luk'yanchuk, I.A., Schilling, A., Gregg, J.M., Catalan, G., and Scott, J.F.: Origin of ferroelastic domains in free-standing single-crystal ferroelectric films. Phys. Rev. B 79, 144111 (2009).Google Scholar
63.Szwarcman, D., Prosandeev, S., Louis, L., Berger, S., Rosenberg, Y., Lereah, Y., Bellaiche, L., and Markovich, G.: The stabilization of a single domain in free-standing ferroelectric nanocrystals. J. Phys.: Condens. Matter 26, 122202 (2014).Google ScholarPubMed
64.Shiratori, Y., Pithan, C., Dornseiffer, J., and Waser, R.: Raman scattering studies on nanocrystalline BaTiO3 Part II—consolidated polycrystalline ceramics. J. Raman Spectrosc. 38, 1300 (2007).CrossRefGoogle Scholar
65.Snoeck, E., Gatel, C., Lacroix, L.M., Blon, T., Lachaize, S., Carrey, J., Respaud, M., and Chaudret, B.: Magnetic configurations of 30 nm iron nanocubes studied by electron holography. Nano Lett. 8, 4293 (2008).Google Scholar
66.Rossetti, G.A., Khachaturyan, A.G., Akcay, G., and Ni, Y.: Ferroelectric solid solutions with morphotropic boundaries: vanishing polarization anisotropy, adaptive, polar glass, and two-phase states. J. Appl. Phys. 103, 114113 (2008).Google Scholar
67.Durgun, E., Ghosez, P., Shaltaf, R., Gonze, X., and Raty, J.-Y.: Polarization vortices in germanium telluride nanoplatelets: a theoretical study. Phys. Rev. Lett. 103, 247601 (2009).Google Scholar
68.Ponomareva, I., Naumov, I.I., Kornev, I., Fu, H., and Bellaiche, L.: Atomistic treatment of depolarizing energy and field in ferroelectric nanostructures. Phys. Rev. B 72, 140102(R) (2005).Google Scholar
69.Prosandeev, S. and Bellaiche, L.: Characteristics and signatures of dipole vortices in ferroelectric nanodots: first-principles-based simulations and analytical expressions. Phys. Rev. B 75, 094102 (2007).Google Scholar
70.Nelson, C.T., Winchester, B., Zhang, Y., Kim, S.-J., Melville, A., Adamo, C., Folkman, C.M., Baek, S.-H., Eom, C.-B., Schlom, D.G., Chen, L.-Q., and Pan, X.: Spontaneous vortex nanodomain arrays at ferroelectric heterointerfaces. Nano Lett. 11, 828 (2011).Google Scholar
71.Jia, C.-L., Urban, K.W., Alexe, M., Hesse, D., and Vrejoiu, I.: Direct observation of continuous electric dipole rotation in flux-closure domains in ferroelectric Pb(Zr,Ti)O3. Science 331, 1420 (2011).Google Scholar
72.Rodriguez, B.J., Gao, X.S., Liu, L.F., Lee, W., Naumov, I.I., Bratkovsky, A.M., Hesse, D., and Alexe, M.: Vortex polarization states in nanoscale ferroelectric arrays. Nano Lett. 9, 1127 (2009).Google Scholar
73.Szwarcman, D., Lubk, A., Linck, M., Vogel, K., Lereah, Y., Lichte, H., and Markovich, G.: Ferroelectric effects in individual BaTiO3 nanocrystals investigated by electron holography. Phys. Rev. B 85, 134112 (2012).CrossRefGoogle Scholar
74.Szwarcman, D., Vestler, D., and Markovich, G.: The size-dependent ferroelectric phase transition in BaTiO3 nanocrystals probed by surface plasmons. ACS Nano 5, 507 (2011).Google Scholar
75.Allard, L.F., Bigelow, W.C., Jose-Yacaman, M., Nackashi, D.P., Damiano, J., and Mick, S.E.: A new MEMS-based system for ultra-high-resolution imaging at elevated temperatures. Microsc. Res. Tech. 72, 208 (2009).CrossRefGoogle ScholarPubMed
76.Berweger, S., Neacsu, C.C., Mao, Y., Zhou, H., Wong, S.S., and Raschke, M.B.: Optical nanocrystallography with tip-enhanced phonon Raman spectroscopy. Nat. Nanotechnol. 4, 496 (2009).Google Scholar
77.Yasui, K. and Kato, K.: Influence of adsorbate-induced charge screening, depolarization factor, mobile carrier concentration, and defect-induced microstrain on the size effect of a BaTiO3 nanoparticle. J. Phys. Chem. C 117, 19632 (2013).Google Scholar
78.Lee, W., Han, H., Lotnyk, A., Schubert, M.A., Senz, S., Alexe, M., Hesse, D., Baik, S., and Gösele, U.: Individually addressable epitaxial ferroelectric nanocapacitor arrays with near Tb inch−2 density. Nat. Nanotechnol. 3, 402 (2008).Google Scholar
79.Ducharme, S.: An inside-out approach to storing electrostatic energy. ACS Nano 3, 2447 (2009).Google Scholar
80.Kim, J., Hong, J., Park, M., Zhe, W., Kim, D., Jang, Y.J., Kim, D.H., and No, K.: Facile preparation of PbTiO3 nanodot arrays: combining nanohybridization with vapor phase reaction sputtering. Adv. Funct. Mater. 21, 4277 (2011).Google Scholar
81.Im, B., Jun, H., Lee, K.H., Lee, S.-H., Yang, I.K., Jeong, Y.H., and Lee, J.S.: Fabrication of a vertically aligned ferroelectric perovskite nanowire array on conducting substrate. Chem. Mater. 22, 4806 (2010).Google Scholar
82.Kim, W.-H. and Son, J.Y.: BiFeO3 nanodots prepared via dip-pen lithography on Nb-doped SrTiO3 and highly ordered pyrolytic graphite substrates. Appl. Phys. Lett. 103, 052905 (2013).Google Scholar
83.Son, J.Y., Shin, Y.-H., Ryu, S., Kim, H., and Jang, H.M.: Dip-pen lithography of ferroelectric PbTiO3 nanodots. J. Am. Chem. Soc. 131, 14676 (2009).Google Scholar
84.Kim, Y., Kim, Y., Han, H., Jesse, S., Hyun, S., Lee, W., Kalinin, S.V., and Kim, J.K.: Towards the limit of ferroelectric nanostructures: switchable sub-10 nm nanoisland arrays. J. Mater. Chem. C 1, 5299 (2013).Google Scholar
85.Kim, Y., Han, H., Kim, Y., Lee, W., Alexe, M., Baik, S., and Kim, J.K.: Ultrahigh density array of epitaxial ferroelectric nanoislands on conducting substrates. Nano Lett. 10, 2141 (2010).Google Scholar
86.Kato, K., Mimura, K., Dang, F., Imai, H., Wada, S., Osada, M., Haneda, H., and Kuwabara, M.: BaTiO3 nanocube and assembly to ferroelectric supracrystals. J. Mater. Res. 28, 2932 (2013).Google Scholar
87.Przybylińska, H., Springholz, G., Lechner, R.T., Hassan, M., Wegscheider, M., Jantsch, W., and Bauer, G.: Magnetic-field-induced ferroelectric polarization reversal in the multiferroic Ge1−xMnxTe semiconductor. Phys. Rev. Lett. 112, 047202 (2014).Google Scholar
88.Choi, T., Lee, S., Choi, Y.J., Kiryukhin, V., and Cheong, S.-W.: Switchable ferroelectric diode and photovoltaic effect in BiFeO3. Science 324, 63 (2009).Google Scholar
89.Wang, Z.L. and Song, J.: Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242 (2006).Google Scholar
90.Qin, Y., Wang, X., and Wang, Z.L.: Microfibre–nanowire hybrid structure for energy scavenging. Nature 451, 809 (2008).Google Scholar
91.Chen, X., Xu, S., Yao, N., and Shi, Y.: 1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers. Nano Lett. 10, 2133 (2010).Google Scholar
92.Qi, Y., Jafferis, N.T., Lyons, K. Jr., Lee, C.M., Ahmad, H., and McAlpine, M.C.: Piezoelectric ribbons printed onto rubber for flexible energy conversion. Nano Lett. 10, 524 (2010).Google Scholar
93.Jung, J.H., Chen, C.-Y., Yun, B.K., Lee, N., Zhou, Y., Jo, W., Chou, L.-J., and Wang, Z.L.: Lead-free KNbO3 ferroelectric nanorod based flexible nanogenerators and capacitors. Nanotechnology 23, 375401 (2012).Google Scholar
94.Jung, J.H., Lee, M., Hong, J.-I., Ding, Y., Chen, C.-Y., Chou, L.-J., and Wang, Z.L.: Lead free NaNbO3 nanowires for a high output piezoelectric nanogenerator. ACS Nano 5, 10041 (2011).CrossRefGoogle ScholarPubMed
95.Yang, Y., Guo, W., Pradel, K.C., Zhu, G., Zhou, Y., Zhang, Y., Hu, Y., Lin, L., and Wang, Z.L.: Pyroelectric nanogenerators for harvesting thermoelectric energy. Nano Lett. 12, 2833 (2012).CrossRefGoogle ScholarPubMed
96.Yang, Y., Jung, J.H., Yun, B.K., Zhang, F., Pradel, K.C., Guo, W., and Wang, Z.L.: Flexible pyroelectric nanogenerators using a composite structure of lead-free KNbO3 nanowires. Adv. Mater. 24, 5357 (2012).Google Scholar
97.Tang, H., Lin, Y., Andrews, C., and Sodano, H.A.: Nanocomposites with increased energy density through high aspect ratio PZT nanowires. Nanotechnology. 22, 015702 (2011).Google Scholar
98.Tang, H. and Sodano, H.A.: Ultra high energy density nanocomposite capacitors with fast discharge using Ba0.2Sr0.8TiO3 nanowires. Nano Lett. 13, 1373 (2013).Google Scholar
99.Almadhoun, M.N., Bhansali, U.S., and Alshareef, H.N.: Nanocomposites of ferroelectric polymers with surface-hydroxylated BaTiO3 nanoparticles for energy storage applications. J. Mater. Chem. 22, 11196 (2012).Google Scholar
100.Li, J., Claude, J., Norena-Franco, L.E., Il Seok, S., and Wang, Q.: Electrical energy storage in ferroelectric polymer nanocomposites containing surface-functionalized BaTiO3 nanoparticles. Chem. Mater. 20, 6304 (2008).Google Scholar
101.Kim, P., Doss, N.M., Tillotson, J.P., Hotchkiss, P.J., Pan, M.-J., Marder, S.R., Li, J., Calame, J.P., and Perry, J.W.: High energy density nanocomposites based on surface-modified BaTiO3 and a ferroelectric polymer. ACS Nano 3, 2581 (2009).Google Scholar
102.Xie, L., Huang, X., Huang, Y., Yang, K., and Jiang, P.: Core@double-shell structured BaTiO3−polymer nanocomposites with high dielectric constant and low dielectric loss for energy storage application. J. Phys. Chem. C 117, 22525 (2013).Google Scholar
103.Jung, H.M., Kang, J.-H., Yang, S.Y., Won, J.C., and Kim, Y.S.: Barium titanate nanoparticles with diblock copolymer shielding layers for high-energy density nanocomposites. Chem. Mater. 22, 450 (2010).Google Scholar
104.Choi, C.L., Koski, K.J., Olson, A.C.K., and Alivisatos, A.P.: Luminescent nanocrystal stress gauge. Proc. Natl. Acad. Sci. USA 107, 21306 (2010).Google Scholar
105.Dicken, M.J., Sweatlock, L.A., Pacifici, D., Lezec, H.J., Bhattacharya, K., and Atwater, H.A.: Electrooptic modulation in thin film barium titanate plasmonic interferometers. Nano Lett. 8, 4048 (2008).Google Scholar
106.Kehr, S.C., Liu, Y.M., Martin, L.W., Yu, P., Gajek, M., Yang, S.-Y., Yang, C.-H., Wenzel, M.T., Jacob, R., von Ribbeck, H.-G., Helm, M., Zhang, X., Eng, L.M., and Ramesh, R.: Near-field examination of perovskite-based superlenses and superlens-enhanced probe-object coupling. Nat. Commun. 2, 249 (2011).Google Scholar
107.Dutto, F., Raillon, C., Schenk, K., and Radenovic, A.: Nonlinear optical response in single alkaline niobate nanowires. Nano Lett. 11, 2517 (2011).Google Scholar
108.Lu, F.F., Li, T., Hu, X.P., Cheng, Q.Q., Zhu, S.N., and Zhu, Y.Y.: Efficient second-harmonic generation in nonlinear plasmonic waveguide. Opt. Lett. 36, 3371 (2011).Google Scholar
109.Le Dantec, R., Mugnier, Y., Djanta, G., Bonacina, L., Extermann, J., Badie, L., Joulaud, C., Gerrmann, M., Rytz, D., Wolf, J., and Galez, C.: Ensemble and individual characterization of the nonlinear optical properties of ZnO and BaTiO3 nanocrystals. J. Phys. Chem. C 115, 15140 (2011).Google Scholar
110.Kim, E., Steinbrück, A., Buscaglia, M.T., Buscaglia, V., Pertsch, T., and Grange, R.: Second-harmonic generation of single BaTiO3 nanoparticles down to 22 nm diameter. ACS Nano 7, 5343 (2013).Google Scholar