Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-13T17:18:17.976Z Has data issue: false hasContentIssue false

Synthesis and thin-film self-assembly of radical-containing diblock copolymers

Published online by Cambridge University Press:  20 May 2015

Lizbeth Rostro
Affiliation:
School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, USA
Aditya G. Baradwaj
Affiliation:
School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, USA
Alexander R. Muller
Affiliation:
School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, USA
Jennifer S. Laster
Affiliation:
School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, USA
Bryan W. Boudouris*
Affiliation:
School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, USA
*
Address all correspondence Bryan W. Boudouris atboudouris@purdue.edu
Get access

Abstract

Electronically active block polymers based on π-conjugated macromolecules have been investigated for applications where nanostructured electrodes are of prime import; however, controlling the nanoscale order of these materials has proven challenging. Here, we demonstrate that diblock copolymers that utilize a non-conjugated radical polymer moiety as the electronically active block assemble into ordered thin-film nanostructures. Specifically, the diblock copolymer polydimethylsiloxane-b-poly(2,2,6,6-tetramethylpiperidinyloxy methacrylate) (PDMS–PTMA) was synthesized via atom transfer radical polymerization to generate polymers with readily controlled molecular properties. Importantly, solvent annealing of the PDMS–PTMA thin films led to well-defined nanostructures with domain spacings of the order of ~30–40 nm.

Type
Polymers/Soft Matter Research Letters
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Kennemur, J.G., Yao, L., Bates, F.S., and Hillmyer, M.A.: Sub-5 nm domains in ordered poly(cyclohexylethylene)-block-poly(methyl methacrylate) block polymers for lithography. Macromolecules 47, 1411 (2014).Google Scholar
2.Xu, J., Russell, T.P., Ockob, B.M., and Checco, A.: Block copolymer self-assembly in chemically patterned squares. Soft Matter 7, 3915 (2011).Google Scholar
3.Luo, M. and Epps, T.H. III: Directed block copolymer thin film self-assembly: emerging trends in nanopattern fabrication. Macromolecules 46, 7567 (2013).CrossRefGoogle Scholar
4.Zhang, Y., Sargent, J.L., Boudouris, B.W., and Phillip, W.A.: Nanoporous membranes generated from self-assembled block polymer precursors: Quo Vadis? J. Appl. Polym. Sci. 132, 41683 (2015).CrossRefGoogle Scholar
5.Jackson, E.A. and Hillmyer, M.A.: Nanoporous membranes derived from block copolymers: from drug delivery to water filtration. ACS Nano 4, 3548 (2010).CrossRefGoogle ScholarPubMed
6.Boudouris, B.W., Ho, V., Jimison, L.H., Toney, M.F., Salleo, A., and Segalman, R.A.: Real-time observation of poly(3-alkylthiophene) crystallization and correlation with transient optoelectronic properties. Macromolecules 44, 6653 (2011).CrossRefGoogle Scholar
7.Renaud, C., Mougnier, S.-J., Pavlopoulou, E., Brochon, C., Fleury, G., Deribew, D., Portale, G., Cloutet, E., Chambon, S., Vignau, L., and Hadziioannou, G.: Block copolymer as a nanostructuring agent for high efficiency and annealing-free bulk heterojunction organic solar cells. Adv. Mater. 24, 2196 (2012).CrossRefGoogle ScholarPubMed
8.Olsen, B.D. and Segalman, R.A.: Self-assembly of rod–coil block copolymers. Mater. Sci. Eng. R 62, 37 (2008).Google Scholar
9.Olsen, B.D., Li, X., Wang, J., and Segalman, R.A.: Thin film structure of symmetric rod-coil block copolymers. Macromolecules 40, 3287 (2007).Google Scholar
10.Shah, M. and Ganesan, V.: Correlations between morphologies and photovoltaic properties of rod-coil block copolymers. Macromolecules 43, 543 (2010).Google Scholar
11.Sinturel, C., Grosso, D., Boudot, M., Amenitsch, H., Hillmyer, M.A., Pineau, A., and Vayer, M.: Structural transitions in asymmetric poly(styrene)-block-poly(lactide) thin films induced by solvent vapor exposure. ACS Appl. Mater. Interfaces 6, 12146 (2014).Google Scholar
12.Phillip, W.A., Hillmyer, M.A., and Cussler, E.L.: Cylinder orientation mechanism in block copolymer thin films upon solvent evaporation. Macromolecules 43, 7763 (2010).CrossRefGoogle Scholar
13.Suga, T., Sakata, M., Aoki, K., and Nishide, H.: Synthesis of pendant radical- and ion-containing block copolymers via ring-opening metathesis polymerization for organic resistive memory. ACS Macro Lett. 3, 703 (2014).CrossRefGoogle ScholarPubMed
14.Rostro, L., Galicia, L., and Boudouris, B.W.: Suppressing the environmental dependence of the open-circuit voltage in inverted polymer solar cells through a radical polymer anodic modifier. J. Polym. Sci. B, Pol. Phys. 53, 311 (2015).Google Scholar
15.Oyaizu, K. and Nishide, H.: Radical polymers for organic electronic devices: a radical departure from conjugated polymers? Adv. Mater. 21, 2339 (2009).CrossRefGoogle Scholar
16.Janoschka, T., Hager, M.D., and Schubert, U.S.: Powering up the future: radical polymers for battery applications. Adv. Mater. 24, 6397 (2012).Google Scholar
17.Tomlinson, E.P., Hay, M.E., and Boudouris, B.W.: Radical polymers and their application to organic electronic devices. Macromolecules 47, 6145 (2014).Google Scholar
18.Young, W.-S., Brigandi, P.J., and Epps, T.H. III: Crystallization-induced lamellar-to-lamellar thermal transition in salt-containing block copolymer electrolytes. Macromolecules 41, 6276 (2008).Google Scholar
19.Patel, S.N., Javier, A.E., and Balsara, N.P.: Electrochemically oxidized electronic and ionic conducting nanostructured block copolymers for lithium battery electrodes. ACS Nano 7, 6056 (2013).Google Scholar
20.Patel, S.N., Javier, A.E., Beers, K.M., Pople, J.A., Ho, V., Segalman, R.A., and Balsara, N.P.: Morphology and thermodynamic properties of a copolymer with an electronically conducting block: poly(3-ethylhexylthiophene)-block-poly(ethylene oxide). Nano Lett. 12, 4901 (2012).Google Scholar
21.Singht, C., Goulian, M., Lid, A.J., and Fredrickson, G.H.: Phase behavior of semiflexible diblock copolymers. Macromolecules 27, 2974 (1994).CrossRefGoogle Scholar
22.Ho, V., Boudouris, B.W., McCulloch, B.L., Shuttle, C.G., Burkhardt, M., Chabinyc, M.L., and Segalman, R.A.: Poly(3-alkylthiophene) diblock copolymers with ordered microstructures and continuous semiconducting pathways. J. Am. Chem. Soc. 133, 9270 (2011).Google Scholar
23.Hauffman, G., Rolland, J., Bourgeois, J.-P., Vlad, A., and Gohy, J.-F.: Synthesis of nitroxide-containing block copolymers for the formation of organic cathodes. J. Polym. Sci. Pol. Chem. 51, 101 (2013).Google Scholar
24.Hauffman, G., Maguin, Q., Bourgeois, J.-P., Vlad, A., and Gohy, J.-F.: Micellar cathodes from self-assembled nitroxide-containing block copolymers in battery electrolytes. Macromol. Rapid Commun. 35, 228 (2014).Google Scholar
25.Rostro, L., Baradwaj, A.G., and Boudouris, B.W.: Controlled radical polymerization and quantification of solid state electrical conductivities of macromolecules bearing pendant stable radical groups. ACS Appl. Mater. Interfaces 5, 9896 (2013).Google Scholar
26.Bates, F.S. and Fredrickson, G.H.: Block copolymer thermodynamics: theory and experiment. Annu. Rev. Phys. Chem. 41, 525 (1990).Google Scholar
27.Widin, J.M., Kim, M., Schmitt, A.K., Han, E., Gopalan, P., and Mahanthappa, M.K.: Bulk and thin film morphological behavior of broad dispersity poly(styrene-b-methyl methacrylate) diblock copolymers. Macromolecules 46, 4472 (2013).CrossRefGoogle Scholar
28.Schmitt, A.L., Repollet-Pedrosa, M.H., and Mahanthappa, M.K.: Polydispersity-driven block copolymer amphiphile self-assembly into prolate-spheroid micelles. ACS Macro Lett. 1, 300 (2012).Google Scholar
29.Matyjaszewski, K.: Atom transfer radical polymerization (ATRP): current status and future perspectives. Macromolecules 45, 4015 (2012).Google Scholar
30.Rostro, L., Wong, S.H., and Boudouris, B.: Solid state electrical conductivity of radical polymers as a function of pendant group oxidation state. Macromolecules 47, 3713 (2014).Google Scholar
31.Bobela, D.C., Hughes, B.K., Braunecker, W.A., Kemper, T.W., Larsen, R.E., and Gennett, T.: Close packing of nitroxide radicals in stable organic radical polymeric materials. J. Phys. Chem. Lett. 6, 1414 (2015).Google Scholar
Supplementary material: File

Rostro and Baradwaj supplementary material

Figures S1-S5

Download Rostro and Baradwaj supplementary material(File)
File 1.9 MB