Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-13T14:31:51.240Z Has data issue: false hasContentIssue false

Silver nanostructures evolution in porous SiO2/p-Si matrices for wide wavelength surface-enhanced Raman scattering applications

Published online by Cambridge University Press:  26 February 2018

Dmitry Yakimchuk
Affiliation:
Division of Cryogenic Research, “Scientific-Practical Materials Research Center NAS of Belarus”, Minsk 220072, Belarus
Egor Kaniukov
Affiliation:
Division of Cryogenic Research, “Scientific-Practical Materials Research Center NAS of Belarus”, Minsk 220072, Belarus
Victoria Bundyukova
Affiliation:
Division of Cryogenic Research, “Scientific-Practical Materials Research Center NAS of Belarus”, Minsk 220072, Belarus
Liubov Osminkina
Affiliation:
Department of Physics, Lomonosov Moscow State University, Leninskie Gory 1, Moscow 119991, Russian Federation
Steffen Teichert
Affiliation:
Ernst Abbe University of Applied Science, Carl-Zeiss-Promenade 2, Jena 07745, Germany
Sergey Demyanov
Affiliation:
Division of Cryogenic Research, “Scientific-Practical Materials Research Center NAS of Belarus”, Minsk 220072, Belarus
Vladimir Sivakov*
Affiliation:
Functional Interfaces Department, Leibniz Institute of Photonic Technology, Albert Einstein St, 9, Jena 07745, Germany
*
Address all correspondence to Vladimir Sivakov at vladimir.sivakov@leibniz-ipht.de
Get access

Abstract

The formation of silver nanostructures (AgNSs) with different crystals morphology in porous SiO2/p-Si templates by the electroless wet-chemical method at temperatures between 20 and 50 °C and surface-enhanced Raman scattering (SERS) was investigated. It was found that optimized dendritic silver architectures contain a significant number of localized “hot spots.” We show that well-reproducible AgNSs provide a significantly enhanced Raman signal of Nile blue dye molecules up to 10−6 M by using different excitation wavelengths (473, 532, and 633 nm). Based on our observations, the well-organized AgNSs can act as efficient surfaces for SERS as well as (bio)-sensor applications.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Yang, Z.L., Li, Q.H., Ruan, F.X., Li, Z.P., Ren, B., Xu, H.X., and Tian, Z.Q.: FDTD for plasmonics: Applications in enhanced Raman spectroscopy. Chin. Sci. Bull. 55, 26352642 (2010).CrossRefGoogle Scholar
2. Spende, A., Sobel, N., Lukas, M., Zierold, R., Riedl, J.C., Gura, L., Schubert, I., Moreno, J.M.M., Nielsch, K., Stühn, B., Hess, C., Trautmann, C., and Toimil-Molares, M.E.: TiO2, SiO2, and Al2O3 coated nanopores and nanotubes produced by ALD in etched ion-track membranes for transport measurements. Nanotechnology 26, 335301 (2015).CrossRefGoogle ScholarPubMed
3. Kalanda, N.A., Gorokh, G.G., Yarmolich, M.V., Lozovenko, A.A., and Kanyukov, E.Y.: Magnetic and magnetoresistive properties of Al2O3–Sr2FeMoO6–δ–Al2O3 nanoheterostructures. Phys. Solid State 58, 351359 (2016).CrossRefGoogle Scholar
4. Guo, P., Martin, C.R., Zhao, Y., Ge, J., and Zare, R.N.: General method for producing organic nanoparticles using nanoporous membranes. Nano Lett. 10, 22022206 (2010).Google Scholar
5. Shen, C., Wang, X., Zhang, W., and Kang, F.: Direct prototyping of patterned nanoporous carbon: a route from materials to on-chip devices. Sci. Rep. 3, 2294 (2013).Google Scholar
6. Kaniukov, E.Y., Shumskaya, E.E., Yakimchuk, D.V., Kozlovskiy, A.L., Ibragimova, M.A., and Zdorovets, M.V.: Evolution of the polyethylene terephthalate track membranes parameters at the etching process. J. Contemp. Phys. (Armenian Acad. Sci.) 52, 155160 (2017).CrossRefGoogle Scholar
7. Kozlovskiy, A.L., Korolkov, I.V., Kalkabay, G., Ibragimova, M.A., Ibrayeva, A.D., Zdorovets, M.V., Mikulich, V.S., Yakimchuk, D.V., Shumskaya, A.E., and Kaniukov, E.Y.: Comprehensive study of Ni nanotubes for bioapplications: from synthesis to payloads attaching. J. Nanomater. 2017, 19 (2017).Google Scholar
8. Boarino, L., Borini, S., and Amato, G.: Electrical properties of mesoporous silicon: from a surface effect to coulomb blockade and more. J. Electrochem. Soc. 156, K223K226 (2009).Google Scholar
9. Dallanora, A., Marcondes, T.L., Bermudez, G.G., Fichtner, P.F.P., Trautmann, C., Toulemonde, M., and Papaléo, R.M.: Nanoporous SiO2/Si thin layers produced by ion track etching: dependence on the ion energy and criterion for etchability. J. Appl. Phys. 104, 24307-124307-8 (2008).Google Scholar
10. Nishiyama, H., Mizoshiri, M., Hirata, Y., and Nishii, J.: Hybrid microlens structures using femtosecond laser nonlinear lithography. IOP Conf. Ser. Mater. Sci. Eng. 18, 14 (2011).CrossRefGoogle Scholar
11. Fink, D., Petrov, A.V., Hoppe, K., Fahrner, W.R., Papaleo, R.M., Berdinsky, A.S., Chandra, A., Chemseddine, A., Zrineh, A., Biswas, A., Faupel, F., and Chadderton, L.T.: Etched ion tracks in silicon oxide and silicon oxynitride as charge injection or extraction channels for novel electronic structures. Nucl. Instrum. Methods Phys. Res. B 218, 355361 (2004).CrossRefGoogle Scholar
12. Cultrera, A., Boarino, L., Amato, G., and Lamberti, C.: Band-gap states in unfilled mesoporous nc-TiO2: measurement protocol for electrical characterization. J. Phys. D Appl. Phys. 47, 015102 (1–8) (2014).Google Scholar
13. Han, C.M., Jang, T.S., Kim, H.E., and Koh, Y.H.: Creation of nanoporous TiO2 surface onto polyether ether ketone for effective immobilization and delivery of bone morphogenetic protein. J. Biomed. Mater. Res. A 102, 139 (2014).CrossRefGoogle Scholar
14. Demyanov, S., Kaniukov, E., Petrov, A., and Sivakov, V.: Positive magnetoresistive effect in Si/SiO2(Cu/Ni) nanostructures. Sens. Actuators A, Phys. 216, 6468 (2014).CrossRefGoogle Scholar
15. Panarin, A.Y., Terekhov, S.N., Kholostov, K.I., and Bondarenko, V.P.: SERS-active substrates based on n-type porous silicon. Appl. Surf. Sci. 256, 69696976 (2010).Google Scholar
16. Bandarenka, H., Artsemyeva, K., Redko, S., Panarin, A., Terekhov, S., and Bondarenko, V.: Effect of swirl-like resistivity striations in n+-type Sb doped Si wafers on the properties of Ag/porous silicon SERS substrates. Phys. Status Solidi 10, 624627 (2013).Google Scholar
17. Girel, K., Yantcevich, E., Arzumanyan, G., Doroshkevich, N., and Bandarenka, H.: Detection of DNA molecules by SERS spectroscopy with silvered porous silicon as an active substrate. Phys. Status Solidi 213, 29112915 (2016).Google Scholar
18. Arzumanyan, G., Doroshkevich, N., Mamatkulov, K., Shashkov, S., Girel, K., Bandarenka, H., and Borisenko, V.: Phospholipid detection by surface-enhanced Raman scattering using silvered porous silicon substrates. Phys. Status Solidi 214, 1600915 (2017).Google Scholar
19. Bechelany, M., Brodard, P., Philippe, L., and Michler, J.: Extended domains of organized nanorings of silver grains as surface-enhanced Raman scattering sensors for molecular detection. Nanotechnology 20, 455302 (2009).Google Scholar
20. Sakamoto, S., Philippe, L., Bechelany, M., Michler, J., Asoh, H., and Ono, S.: Ordered hexagonal array of Au nanodots on Si substrate based on colloidal crystal templating. Nanotechnology 19, 405304 (2008).CrossRefGoogle ScholarPubMed
21. Kaniukov, E., Yakimchuk, D., Arzumanyan, G., Terryn, H., Baert, K., Kozlovskiy, A., Zdorovets, M., Belonogov, E., and Demyanov, S.: Growth mechanisms of spatially separated copper dendrites in pores of a SiO2 template. Philos. Mag. 97, 22682283 (2017).Google Scholar
22. Baniukevic, J., Hakki Boyaci, I., Goktug Bozkurt, A., Tamer, U., Ramanavicius, A., and Ramanaviciene, A.: Magnetic gold nanoparticles in SERS-based sandwich immunoassay for antigen detection by well oriented antibodies. Biosens. Bioelectron. 43, 281288 (2013).Google Scholar
23. Sivakov, V., Kaniukov, E.Y., Petrov, A.V., Korolik, O.V., Mazanik, A.V., Bochmann, A., Teichert, S., Hidi, I.J., Schleusener, A., Cialla, D., Eugenia Toimil-Molares, M., Trautmann, C., Popp, J., and Demyanov, S.E.: Silver nanostructures formation in porous Si/SiO2 matrix. J. Cryst. Growth 400, 2126 (2014).Google Scholar
24. Shumskaya, A.E., Kaniukov, E.Y., Kozlovskiy, A.L., Shlimas, D.I., Zdorovets, M.V., Ibragimova, M.A., Rusakov, V.S., and Kadyrzhanov, K.K.: Template synthesis and magnetic characterization of FeNi nanotubes. Prog. Electromagn. Res. C 75, 2330 (2017).Google Scholar
25. Dou, X., Jung, Y.M., Cao, Z.Q., and Ozaki, Y.: Surface-enhanced Raman scattering of biological molecules on metal colloid II: effects of aggregation of gold colloid and comparison of effects of pH of glycine solutions between gold and silver colloids. Appl. Spectrosc. 53, 14401447 (1999).CrossRefGoogle Scholar
26. Siiman, O., and Feilchenfeld, H.: Internal fractal structure of aggregates of silver particles and its consequences on surface-enhanced Raman scattering intensities. J. Phys. Chem. 92, 453464 (1988).CrossRefGoogle Scholar
27. Yin, H.J., Chen, Z.Y., Zhao, Y.M., Lv, M.Y., Shi, C.A., Wu, Z.L., Zhang, X., Liu, L., Wang, M.L., and Xu, H.J.: Ag@Au core-shell dendrites: a stable, reusable and sensitive surface enhanced Raman scattering substrate. Sci. Rep. 5, 19 (2015).Google Scholar
28. Kaniukov, E.Y., Ustarroz, J., Yakimchuk, D.V., Petrova, M., Terryn, H., Sivakov, V., and Petrov, A.V.: Tunable nanoporous silicon oxide templates by swift heavy ion tracks technology. Nanotechnology 27, 115305 (2016).Google Scholar
29. Feng, C., Zhao, Y., and Jiang, Y.: Silver nano-dendritic crystal film: a rapid dehydration SERS substrate of totally new concept. RSC Adv. 5, 45784585 (2015).Google Scholar
30. Zhao, B., Lu, Y., Zhang, C., Fu, Y., Moeendarbari, S., Shelke, S.R., Liu, Y., and Hao, Y.: Silver dendrites decorated filter membrane as highly sensitive and reproducible three dimensional surface enhanced Raman scattering substrates. Appl. Surf. Sci. 387, 431436 (2016).CrossRefGoogle Scholar
31. Qiu, T., Zhou, Y., Li, J., Zhang, W., Lang, X., Cui, T., and Chu, P.K.: Hot spots in highly Raman-enhancing silver nano-dendrites. J. Phys. D, Appl. Phys. 42, 175403 (2009).CrossRefGoogle Scholar
32. Sharma, B., Frontiera, R.R., Henry, A.-I., Ringe, E., and Van Duyne, R.P.: SERS: materials, applications, and the future. Mater. Today 15, 1625 (2012).Google Scholar
33. Li, W.H., Zamani, R., Rivera Gil, P., Pelaz, B., Ibanez, M., Cadavid, D., Shavel, A., Alvarez-Puebla, R.A., Parak, W.J., Arbiol, J., and Cabot, A.: CuTe nanocrystals: shape and size control, plasmonic properties, and use as SERS probes and photothermal agents. J. Am. Chem. Soc. 135, 7098 (2013).Google Scholar
34. Etchegoin, P.G. and Le Ru, E.C.: Resolving single molecules in surface-enhanced Raman scattering within the inhomogeneous broadening of Raman peaks. Anal. Chem. 82, 28882892 (2010).Google Scholar