Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T22:11:57.375Z Has data issue: false hasContentIssue false

Real-time imaging of chromophore alignment in photorefractive polymer devices through multiphoton microscopy

Published online by Cambridge University Press:  19 May 2015

Brittany Lynn
Affiliation:
College of Optical Sciences, The University of Arizona, Tucson, Arizona, USA
Alexander Miles
Affiliation:
College of Optical Sciences, The University of Arizona, Tucson, Arizona, USA
Soroush Mehravar
Affiliation:
College of Optical Sciences, The University of Arizona, Tucson, Arizona, USA
Pierre-Alexandre Blanche*
Affiliation:
College of Optical Sciences, The University of Arizona, Tucson, Arizona, USA
Khanh Kieu
Affiliation:
College of Optical Sciences, The University of Arizona, Tucson, Arizona, USA
Robert A. Norwood
Affiliation:
College of Optical Sciences, The University of Arizona, Tucson, Arizona, USA
N. Peyghambarian
Affiliation:
College of Optical Sciences, The University of Arizona, Tucson, Arizona, USA
*
Address all correspondence to Pierre-Alexandre Blanche atpablanche@optics.arizona.edu
Get access

Abstract

A model with which to predict the effect of coplanar electrode geometry on diffraction uniformity in photorefractive polymer display devices was developed. Assumptions made in the standard use cases are no longer valid in the regions of extreme electric fields present in this type of device. Using electric-field induced second-harmonic generation through multiphoton microscopy, the physical response in regions of internal electric fields which fall outside the standard regimes of validity were probed. Adjustments to the standard model were made and the results of the new model corroborated through holographic four-wave mixing measurements.

Type
Polymers/Soft Matter Research Letters
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Ducharme, S., Scott, J.C., Twieg, R.J., and Moerner, W.E.: Observation of the photorefractive effect in a polymer. Phys. Rev. Lett. 66, 1846 (1991).Google Scholar
2.Meerholz, K., Volodin, B.L., Sandalphon, , Kippelen, B., and Peyghambarian, N.: A photorefractive polymer with high optical gain and diffraction efficiency near 100%. Nature 371, 497 (1994).Google Scholar
3.Eralp, M., Thomas, J., Li, G., Tay, S., Schulzgen, A., Norwood, R.A., Peyghambarian, N., and Yamamoto, M.: Photorefractive polymer device with video-rate response time operating at low voltages. Opt. Lett. 31, 1408 (2006).Google Scholar
4.Blanche, P.-A., Bablumian, A., Voorakaranam, R., Christenson, C.W., Lin, W., Gu, T., Flores, D., Wang, P., Hsieh, W.-Y., Kathaperumal, M., Rachwal, B., Siddiqui, O., Thomas, J., Norwood, R.A., Yamamoto, M., and Peyghambarian, N.: Holographic three-dimensional telepresence using large-area photorefractive polymer. Nature 468, 80 (2010).Google Scholar
5.Christenson, C.W., Greenlee, C., Lynn, B., Thomas, J., Blanche, P.-A., Voorakaranam, R., St. Hilaire, P., Lacomb, L. Jr., Norwood, R.A., Yamamoto, M., and Peyghambarian, N.: Interdigitated coplanar electrodes for enhanced sensitivity in a photorefractive polymer. Opt. Lett. 36, 3377 (2011).Google Scholar
6.Bosshard, Ch., Hulliger, J., Florsheimer, M., and Gunter, P.: Organic Nonlinear Optical Materials (CRC Press, London, England, 2001).Google Scholar
7.Singer, K.D., Kuzyk, M.G., Holland, W.R., Sohn, J.E., Lalama, S.J., Comizzoli, R.B., Katz, H.E., and Schilling, M.L.: Electro-optic phase modulation and optical second-harmonic generation in corona-poled polymer films. Appl. Phys. Lett. 53, 1800 (1988).CrossRefGoogle Scholar
8.Ostroverkhova, O., Stickrath, A., and Singer, K.D.: Electric field-induced second harmonic generation studies of chromophore orientational dynamics in photorefractive polymers. J. Appl. Phys. 91, 9481 (2002).Google Scholar
9.Lüpke, G., Meyer, C., Ohlhoff, C., Kurz, H., Lehmann, S., and Marowsky, G.: Optical second-harmonic generation as a probe of electric-field-induced perturbation of centrosymmetric media. Opt. Lett. 20, 1997 (1995).Google Scholar
10.Vannikov, A.V., Gorbunova, Y.G., Grishina, A.D., and Tsivadze, A.Y.: Photoelectric, nonlinear optical, and photorefractive properties of polymer composites based on supramolecular ensembles of Ru(II) and Ga(III) complexes with tetra-15-crown-5-phthalocyanine. Prot. Met. Phys. Chem. Surf. 49, 57 (2013).Google Scholar
11.Boyd, R.W.: Nonlinear Optics, 3rd ed. (Elsevier Science, Philadelphia, 2008).Google Scholar
12.Dalton, L.R., Harper, A.W., and Robinson, B.H.: The role of London forces in defining noncentrosymmetric order of high dipole moment-high hyperpolarizability chromophores in electrically poled polymeric thin films. Proc. Natl. Acad. Sci. USA 94, 4842 (1997).Google Scholar
13.Kieu, K., Mehravar, S., Gowda, R., Norwood, R.A., and Peyghambarian, N.: Label-free multi-photon imaging using a compact femtosecond fiber laser mode-locked by carbon nanotube saturable absorber. Biomed. Opt. Express 4, 334 (2013).Google Scholar
14.Kieu, K. and Mansuripur, M.: Femtosecond laser pulse generation with a fiber taper embedded in carbon nanotube /polymer composite. Opt. Lett. 32, 2242 (2007).Google Scholar
15.Mansuripur, M.: Classical Optics and its Application, 2nd ed. (Cambridge University Press, Cambridge, England, 2009).Google Scholar
16.Ostroverkhova, O. and Singer, K.D.: Space-charge dynamics in photorefractive polymers. J. Appl. Phys., 92, 1727 (2002).CrossRefGoogle Scholar
17.Schildkraut, J.S. and Cui, Y.: Zero-order and first-order theory of the formation of space-charge gratings in photoconductive polymers. J. Appl. Phys. 72, 5055 (1992).Google Scholar
18.Schildkraut, J.S. and Buettner, A.V.: Theory and simulation of the formation and erasure of space-charge gratings in photoconductive polymers. J. Appl. Phys 72, 1888 (1992).Google Scholar
19.Press, W.H., Teukolsky, S.A., Vetterling, W.T., and Flannery, B.P.: Numerical Recipes 3rd Edition: The Art of Scientific Computing, 3rd ed. (Cambridge University Press, Cambridge, England, 2007).Google Scholar