Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T23:13:18.713Z Has data issue: false hasContentIssue false

Prospects and challenges of nanomaterial engineered prepregs for improving interlaminar properties of laminated composites––a review

Published online by Cambridge University Press:  28 March 2017

A.B.M. Iftekharul Islam
Affiliation:
Department of Nanoengineering, JSNN, North Carolina A&T State University, 2907 E Gate City Blvd, Greensboro, NC-27401, USA
Ajit D. Kelkar*
Affiliation:
Department of Nanoengineering, JSNN, North Carolina A&T State University, 2907 E Gate City Blvd, Greensboro, NC-27401, USA
*
Address all correspondence to A.D. Kelkar at kelkar@ncat.edu
Get access

Abstract

In the recent years, several investigators are incorporating nanotechnology, one of the most powerful trendsetters in material research, to conventional polymer prepregs to enhance mechanical properties of composite strucutures. The current paper outlines the role of nanotechnology in reinforcing resin and challenges for fabricating nanomaterial reinforced prepregs. As delamination is the most critical problem for composite materials, the current study only focuses the application nanotechnology as a possible solution to alleviate delamination problems in laminated composites. The importance of nanoengineered prepregs is discussed in a viewpoint of improvement in interlaminar properties of the laminated composite materials.

Type
Prospective Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Michaud, V., Tavares, S.S., Sigg, A., Lavanchy, S., and Månson, J.-A.E.: Low pressure processing of high fiber content composites. FPCM8 (2006). Available at http://scholar.googleusercontent.com/scholar?q=cache:ajEMgNTg0ncJ:scholar.google.com/&hl=en&as_sdt=0,34 (accessed April 16, 2015).Google Scholar
2. Hsieh, T.H., Kinloch, A.J., Masania, K., Sohn Lee, J., Taylor, A.C., and Sprenger, S.: The toughness of epoxy polymers and fibre composites modified with rubber microparticles and silica nanoparticles. J. Mater. Sci. 45, 11931210 (2009).Google Scholar
3. Yao, X.F.: Dynamic response and fracture characterization of polymer-clay nanocomposites with Mode-I crack. J. Compos. Mater. 39, 14871496 (2005).Google Scholar
4. Kelkar, A.D., Mohan, R., Bolick, R., and Shendokar, S.: Effect of nanoparticles and nanofibers on Mode I fracture toughness of fiber glass reinforced polymeric matrix composites. Mater. Sci. Eng. B, Solid-State Mater. Adv. Technol. 168, 8589 (2010).Google Scholar
5. Johnsen, A.B., Kinloch, A.J., Mohammed, R.D., Taylor, A.C., and Sprenger, S.: Toughening mechanisms of nanoparticle-modified epoxy polymers. Polymer (Guildf) 48, 530541 (2007).CrossRefGoogle Scholar
6. Kotoul, M. and Dlouhy, I.: Metal particles constraint in glass matrix composites and its impact on fracture toughness enhancement. Mater. Sci. Eng. A 387–389, 404408 (2004).Google Scholar
7. Kamar, N.T., Hossain, M.M., Khomenko, A., Haq, M., Drzal, L.T., and Loos, A.: Interlaminar reinforcement of glass fiber/epoxy composites with graphene nanoplatelets. Compos. A, Appl. Sci. Manuf. 70, 8292 (2015).Google Scholar
8. Zeng, Y., Liu, H.Y., Mai, Y.W., and Du, X.S.: Improving interlaminar fracture toughness of carbon fibre/epoxy laminates by incorporation of nano-particles. Compos. B Eng. 43, 9094 (2012).Google Scholar
9. Hillermeier, R.W. and Seferis, J.C.: Interlayer toughening of resin transfer molding composites. Compos. A, Appl. Sci. Manuf. 32, 721729 (2001).Google Scholar
10. Wetzel, A., Rosso, P., Haupert, F., and Friedrich, K.: Epoxy nanocomposites—fracture and toughening mechanisms. Eng. Fract. Mech. 73, 23752398 (2006).Google Scholar
11. Electrospin Tech: Composite—Mechanical Property Enhancement (2013). Available at http://electrospintech.com/composite-mech.html#.Vi-sUPmrTIV (accessed January 1, 2015).Google Scholar
12. Rahman, M.M., Hosur, M., Hsiao, K.-T., Wallace, L., and Jeelani, S.: Low velocity impact properties of carbon nanofibers integrated carbon fiber/epoxy hybrid composites manufactured by OOA–VBO process. Compos. Struct. 120, 3240 (2015).Google Scholar
13. Sadeghian, R., Gangireddy, S., Minaie, B., and Hsiao, K.-T.: Manufacturing carbon nanofibers toughened polyester/glass fiber composites using vacuum assisted resin transfer molding for enhancing the Mode-I delamination resistance. Compos. A., Appl. Sci. Manuf. 37, 17871795 (2006).Google Scholar
14. Shinde, A.K. and Kelkar, A.D.: Effect of TEOS electrospun nanofiber modified resin on interlaminar shear strength of glass fiber/epoxy composite. World Acad. Sci. Eng. Technol. Int. J. Mater. Metall. Eng. 8, 5460 (2014).Google Scholar
15. Wei, Q., ed.: Functional Nanofibers and their Applications (Woodhead Publishing, Philadelphia, Cambridge, and New Delhi, 2012).Google Scholar
16. Dhakate, S.R., Chaudhary, A., Gupta, A., Pathak, A.K., Singh, B.P., Subhedar, K.M., and Yokozeki, T.: Excellent mechanical properties of carbon fiber semi-aligned electrospun carbon nanofiber hybrid polymer composites. RSC Adv. 6, 3671536722 (2016).Google Scholar
17. Chen, Q., Zhang, L., Rahman, A., Zhou, Z., Wu, X.-F., and Fong, H.: Hybrid multi-scale epoxy composite made of conventional carbon fiber fabrics with interlaminar regions containing electrospun carbon nanofiber mats. Compos. A, Appl. Sci. Manuf. 42, 20362042 (2011).Google Scholar
18. Magniez, K., Chaffraix, T., and Fox, B.: Toughening of a carbon-fibre composite using electrospun poly (Hydroxyether of Bisphenol A) nanofibrous membranes through inverse phase separation and inter-domain etherification. Materials (Basel) 4, 19671984 (2011).Google Scholar
19. Li, G., Li, P., Zhang, C., Yu, Y., Liu, H., Zhang, S., Jia, X., Yang, X., Xue, Z., and Ryu, S.: Inhomogeneous toughening of carbon fiber/epoxy composite using electrospun polysulfone nanofibrous membranes by in situ phase separation. Compos. Sci. Technol. 68, 987994 (2008).Google Scholar
20. Zhang, J., Lin, T., and Wang, X.: Electrospun nanofibre toughened carbon/epoxy composites: effects of polyetherketone cardo (PEK-C) nanofibre diameter and interlayer thickness. Compos. Sci. Technol. 70, 16601666 (2010).Google Scholar
21. Garcia, A.J., Wardle, B.L., and John Hart, A.: Joining prepreg composite interfaces with aligned carbon nanotubes. Compos. A, Appl. Sci. Manuf. 39, 10651070 (2008).Google Scholar
22. Zhang, H., Liu, Y., Kuwata, M., Bilotti, E., and Peijs, T.: Improved fracture toughness and integrated damage sensing capability by spray coated CNTs on carbon fibre prepreg. Compos. A, Appl. Sci. Manuf. 70, 102110 (2015).Google Scholar
23. Joshi, S.C. and Dikshit, V.: Enhancing interlaminar fracture characteristics of woven CFRP prepreg composites through CNT dispersion. J. Compos. Mater. 46, 665675 (2011).Google Scholar
24. Carley, A., Geraldo, V., De Oliveira, S., and Avila, A.F.: Nano-engineered composites: interlayer carbon nanotubes effect. Mater. Res. 16, 628634 (2013).Google Scholar
25. Veedu, V.P., Cao, A., Li, X., Ma, K., Soldano, C., Kar, S., Ajayan, P.M., and Ghasemi-Nejhad, M.N.: Multifunctional composites using reinforced laminae with carbon-nanotube forests. Nat. Mater. 5, 457–62 (2006).CrossRefGoogle ScholarPubMed
26. Liang, Z., Wang, B., and Zhang, C.: “(19) United States (12)” patent. Patent No. US 20090280324Al, 2009.Google Scholar
27. Ogasawara, T., Moon, S.-Y., Inoue, Y., and Shimamura, Y.: Mechanical properties of aligned multi-walled carbon nanotube/epoxy composites processed using a hot-melt prepreg method. Compos. Sci. Technol. 71, 18261833 (2011).Google Scholar
28. Zhou, Y., Baseer, M.A., Mahfuz, H., and Jeelani, S.: Fabrication and Evaluation on Nano-Phased Unidirectional Carbon Fiber Reinforced Epoxy. Available at http://www.temp.speautomotive.com/SPEA_CD/SPEA2005/pdf/i/i3.pdf (accessed February 19, 2017).Google Scholar
29. Chen, W.-J., Li, Y.-L., Chiang, C.-L., Kuan, C.-F., Kuan, H.-C., Lin, T.-T., and Yip, M.-C.: Preparation and characterization of carbon nanotubes/epoxy resin nano-prepreg for nanocomposites. J. Phys. Chem. Solids 71, 431435 (2010).Google Scholar
30. Asaro, L., Rivero, G., Manfredi, L., Alvarez, V., and Rodriguez, E.: Development of carbon fiber/phenolic resin prepregs modified with nanoclays. J. Compos. Mater. 50, 12871300 (2016).Google Scholar
31. Arai, M., Noro, Y., Sugimoto, K., and Endo, M.: Mode I and mode II interlaminar fracture toughness of CFRP laminates toughened by carbon nanofiber interlayer. Compos. Sci. Technol. 68, 516525 (2008).CrossRefGoogle Scholar
32. Islam, A.B.M.I. and Kelkar, A.D.: Fabrication and characterization of nanofiber enhanced prepregs. MRS Adv., 16 (2017). doi: https://doi.org/10.1557/adv.2017.142.Google Scholar
33. Gurit: SE 84 Nano High Performance Prepreg, Datasheet/SE 84 Nano—High Performance Prepreg (v5). Available at http://www.gurit.com/files/documents/se-84-nanov5pdf.pdf (accessed July11, 2015).Google Scholar
34. Hackett, S.C., Nelson, J.M., Hine, A.M., Sedgwick, P., Lowe, R.H., Goetz, D.P., and Schultz, W.J.: The effect of nanosilica concentration on the enhancement of epoxy matrix resins for prepreg composites resin flow. Available at http://multimedia.3m.com/mws/media/791704O/nanosilica-concentration-effects-in-epoxy-prepreg-white-paper.pdf (accessed March 14, 2017).Google Scholar
35. Thostenson, E.T., Li, C., and Chou, T.W.: Nanocomposites in context. Compos. Sci. Technol. 65, 491516 (2005).Google Scholar
36. Jana, S.C. and Jain, S.: Dispersion of nanofillers in high performance polymers using reactive solvents as processing aids. Polymer 42, 68976905 (2001).Google Scholar
37. Reia da Costa, E.F., Skordos, A.A., Partridge, I.K., and Rezai, A.: RTM processing and electrical performance of carbon nanotube modified epoxy/fibre composites. Compos. A, Appl. Sci. Manuf. 43, 593602 (2012).Google Scholar
38. Miller, S.G., Micham, L., Copa, C.C., Criss, J.M.J., and Mintz, E.A.: Nanoparticle Filtration in a RTM Processed Epoxy/Carbon Fiber Composite (2011). Available at https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20110014529.pdf (accessed February 19, 2017).Google Scholar
39. Falzon, G., Hawkins, S.C., Huynh, C.P., Radjef, R., and Brown, C.: An investigation of Mode I and Mode II fracture toughness enhancement using aligned carbon nanotubes forests at the crack interface. Compos. Struct. 106, 6573 (2013).Google Scholar
40. Zhang, A., Liu, Y., Kuwata, M., Bilotti, E., and Peijs, T.: Improved fracture toughness and integrated damage sensing capability by spray coated CNTs on carbon fibre prepreg. Compos. A, Appl. Sci. Manuf. 70, 102110 (2015).Google Scholar
41. Kepple, K.L., Sanborn, G.P., Lacasse, P.A., Gruenberg, K.M., and Ready, W.J.: Improved fracture toughness of carbon fiber composite functionalized with multi walled carbon nanotubes. Carbon N. Y. 46, 20262033 (2008).CrossRefGoogle Scholar
42. Lachman, N., Qian, H., Houllé, M., Amadou, J., Shaffer, M.S.P., and Wagner, H.D.: Fracture behavior of carbon nanotube/carbon microfiber hybrid polymer composites. J. Mater. Sci. 48, 55905595 (2013).Google Scholar
43. Qian, A., Bismarck, A., Greenhalgh, E.S., Kalinka, G., and Shaffer, M.S.P.: Hierarchical composites reinforced with carbon nanotube grafted fibers: the potential assessed at the single fiber level. Chem. Mater. 20, 18621869 (2008).Google Scholar
44. Chen, Q., Zhao, Y., Zhou, Z., Rahman, A., Wu, X.F., Wu, W., Xu, T., and Fong, H.: Fabrication and mechanical properties of hybrid multi-scale epoxy composites reinforced with conventional carbon fiber fabrics surface-attached with electrospun carbon nanofiber mats. Compos. B, Eng. 44, 17 (2013).Google Scholar
45. Bensadoun, F., Kchit, N., Billotte, C., Trochu, F., and Ruiz, E.: A comparative study of dispersion techniques for nanocomposite made with nanoclays and an unsaturated polyester resin. J. Nanomater. 2011, Article ID 406087, 112 (2011). doi: 10.1155/2011/406087.Google Scholar
46. Hussain, F.: Review article: polymer-matrix nanocomposites, processing, manufacturing, and application: an overview. J. Compos. Mater. 40, 15111575 (2006).Google Scholar
47. Galledari, N.A., Beheshty, M.H., and Barmar, M.: Effect of NBR on epoxy/glass prepregs properties. J. Appl. Polym. Sci. 123, 15971603 (2012).Google Scholar
48. Mahrholz, T., Stängle, J., and Sinapius, M.: Quantitation of the reinforcement effect of silica nanoparticles in epoxy resins used in liquid composite moulding processes. Compos. A, Appl. Sci. Manuf. 40, 235243 (2009).Google Scholar
49. Seyhan, T., Gojny, F.H., Tanoǧlu, M., and Schulte, K.: Critical aspects related to processing of carbon nanotube/unsaturated thermoset polyester nanocomposites. Eur. Polym. J. 43, 374379 (2007).Google Scholar
50. Naganuma, T., Naito, K., Kyono, J., and Kagawa, Y.: Influence of prepreg conditions on the void occurrence and tensile properties of woven glass fiber-reinforced polyimide composites. Compos. Sci. Technol. 69, 24282433 (2009).CrossRefGoogle Scholar
51. Choi, Y.-K., Sugimoto, K., Song, S.-M., Gotoh, Y., Ohkoshi, Y., and Endo, M.: Mechanical and physical properties of epoxy composites reinforced by vapor grown carbon nanofibers. Carbon N. Y. 43, 21992208 (2005).CrossRefGoogle Scholar
52. Patton, R.D., Pittman, C.U., Wang, L., and Hill, J.R.: Vapor grown carbon fiber composites with epoxy and poly(phenylene sulfide) matrices. Compos. A, Appl. Sci. Manuf. 30, 10811091 (1999).Google Scholar
53. Siddiqui, N.A., Khan, S.U., Ma, P.C., Li, C.Y., and Kim, J.K.: Manufacturing and characterization of carbon fibre/epoxy composite prepregs containing carbon nanotubes. Compos. A, Appl. Sci. Manuf. 42, 14121420 (2011).Google Scholar
54. Lau, K., Lu, M., Cheung, H., Sheng, F., and Li, H.: Thermal and mechanical properties of single-walled carbon nanotube bundle-reinforced epoxy nanocomposites: the role of solvent for nanotube dispersion. Compos. Sci. Technol. 65, 719725 (2005).Google Scholar
55. White, K.L. and Sue, H.J.: Delamination toughness of fiber-reinforced composites containing a carbon nanotube/polyamide-12 epoxy thin film interlayer. Polymer (Guildf). 53, 3742 (2012).Google Scholar
56. Dzenis, Y.A.: Structural Nanocomposites. Faculty Publications from Nebraska Center for Materials and Nanoscience, Lincoln (2008). Available at http://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1080&context=cmrafacpub (accessed March 2, 2017).Google Scholar
57. Gupta, S., Hydro, R.M., and Pearson, R.A.: Fracture behavior of isotropically conductive adhesives. IEEE Trans. Compon. Packag. Technol. 22, 209214 (1999).Google Scholar
58. Xie, A., Liu, B., Sun, Q., Yuan, Z., Shen, J., and Cheng, R.: Cure kinetic study of carbon nanofibers/epoxy composites by isothermal DSC. J. Appl. Polym. Sci. 96, 329335 (2005).Google Scholar
59. Aussawasathien, D. and Sancaktar, E.: Effect of non-woven carbon nanofiber mat presence on cure kinetics of epoxy nanocomposites. Macromol. Symp. 264, 2633 (2008).Google Scholar
60. Hosur, M., Barua, R., Zainuddin, S., Kumar, A., Trovillion, J., and Jeelani, S.: Effect of processing techniques on the performance of Epoxy/MWCNT nanocomposites. J. Appl. Polym. Sci. 127, 42114224 (2013).Google Scholar
61. Rahman, M.M., Hosur, M., Ludwick, A.G., Zainuddin, S., Kumar, A., Trovillion, J., and Jeelani, S.: Thermo-mechanical behavior of epoxy composites modified with reactive polyol diluent and randomly-oriented amino-functionalized multi-walled carbon nanotubes. Polym. Test. 31, 777784 (2012).Google Scholar
62. Velmurugan, R. and Mohan, T.P.: Epoxy-clay nanocomposites and hybrids: synthesis and characterization. J. Reinf. Plast. Compos. 28, 1737 (2008).Google Scholar
63. Xu, W.B., Bao, S.P., Shen, S.J., Hang, G.P., and He, P.S.: Curing kinetics of epoxy resin-imidazole-organic montmorillonite nanocomposites determined by differential scanning calorimetry. J. Appl. Polym. Sci. 88, 29322941 (2003).CrossRefGoogle Scholar