Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-13T20:21:27.326Z Has data issue: false hasContentIssue false

Polymeric scaffolds for three-dimensional culture of nerve cells: a model of peripheral nerve regeneration

Published online by Cambridge University Press:  03 October 2017

Radamés Ayala-Caminero
Affiliation:
Bioengineering Program, University of Puerto Rico Mayaguez, Call Box 9000, Mayagüez, Puerto Rico 00681-9000, USA
Luis Pinzón-Herrera
Affiliation:
Department of Chemical Engineering, University of Puerto Rico Mayagüez, Call Box 9000, Mayaguez, Puerto Rico 00681-9000, USA
Carol A. Rivera Martinez
Affiliation:
Bioengineering Program, University of Puerto Rico Mayaguez, Call Box 9000, Mayagüez, Puerto Rico 00681-9000, USA
Jorge Almodovar*
Affiliation:
Bioengineering Program, University of Puerto Rico Mayaguez, Call Box 9000, Mayagüez, Puerto Rico 00681-9000, USA Department of Chemical Engineering, University of Puerto Rico Mayagüez, Call Box 9000, Mayaguez, Puerto Rico 00681-9000, USA
*
Address all correspondence to J. Almodovar at jorge.almodovar1@upr.edu
Get access

Abstract

Understanding peripheral nerve repair requires the evaluation of three-dimensional (3D) structures that serve as platforms for 3D cell culture. Multiple platforms for 3D cell culture have been developed, mimicking peripheral nerve growth and function, in order to study tissue repair or diseases. To recreate an appropriate 3D environment for peripheral nerve cells, key factors are to be considered, including selection of cells, polymeric biomaterials to be used, and fabrication techniques to shape and form the 3D scaffolds for cellular culture. This review focuses on polymeric 3D platforms used for the development of 3D peripheral nerve cell cultures.

Type
Biomaterials for 3D Cell Biology Prospective Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Griffin, J.W., Hogan, M.V., Chhabra, A.B., and Deal, D.N.: Peripheral nerve repair and reconstruction. J. Bone Joint Surg. – Am. 95, 2144 (2013).Google Scholar
2.Resnick, H.E., Stansberry, K.B., Harris, T.B., Tirivedi, M., Smith, K., Morgan, P., and Vinik, A.I.: Diabetes, peripheral neuropathy, and old age disability. Muscle Nerve 25, 43 (2002).Google Scholar
3.Grinsell, D. and Keating, C.P.: Peripheral nerve reconstruction after injury: a review of clinical and experimental therapies. Biomed. Res. Int. 2014, 698256 (2014).Google Scholar
4.National Institute of Neurological Disorders and Stroke. Peripheral Neuropathy Fact Sheet (Bethesda, Maryland, 2014).Google Scholar
5.Taylor, C.A., Braza, D., Rice, J.B., and Dillingham, T.: The incidence of peripheral nerve injury in extremity trauma. Am. J. Phys. Med. Rehabil. 87, 381 (2008).Google Scholar
6.Choi, S.H., Kim, Y.H., Hebisch, M., Sliwinski, C., Lee, S., D'Avanzo, C., Chen, H., Hooli, B., Asselin, C., Muffat, J., Klee, J.B., Zhang, C., Wainger, B.J., Peitz, M., Kovacs, D.M., Woolf, C.J., Wagner, S.L., Tanzi, R.E., and Kim, D.Y.: A three-dimensional human neural cell culture model of Alzheimer's disease. Nature 515, 274 (2014).Google Scholar
7.Alberio, T., Lopiano, L., and Fasano, M.: Cellular models to investigate biochemical pathways in Parkinson's disease. FEBS J. 279, 1146 (2012).Google Scholar
8.Ravi, M., Paramesh, V., Kaviya, S.R., Anuradha, E., and Paul Solomon, F.D.: 3D cell culture systems: advantages and applications. J. Cell. Physiol. 230, 16 (2015).Google Scholar
9.The American Society for Cell Biology: 2014 ASCB/IFCB Meeting abstracts. Mol. Biol. Cell 25, 3987 (2014).Google Scholar
10.Kempermann, G. and Gage, F.H.: New nerve cells for the adult brain. Sci. Am. 280, 48 (1998).Google Scholar
11.Simons, B.D. and Clevers, H.: Strategies for homeostatic stem cell self-renewal in adult tissues. Cell 145, 851 (2011).Google Scholar
12.Edmondson, R., Broglie, J.J., Adcock, A.F., and Yang, L.: Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay Drug Dev. Technol. 12, 207 (2014).Google Scholar
13.Behan, B.L., DeWitt, D.G., Bogdanowicz, D.R., Koppes, A.N., Bale, S.S., and Thompson, D.M.: Single-walled carbon nanotubes alter Schwann cell behavior differentially within 2D and 3D environments. J. Biomed. Mater. Res. A 96A, 46 (2011).Google Scholar
14.Mobasseri, A., Faroni, A., Minogue, B.M., Downes, S., Terenghi, G., and Reid, A.J.: Polymer scaffolds with preferential parallel grooves enhance nerve regeneration. Tissue Eng. A 21, 1152 (2015).Google Scholar
15.Tian, L., Prabhakaran, M.P., and Ramakrishna, S.: Strategies for regeneration of components of nervous system: scaffolds, cells and biomolecules. Regen. Biomater. 2, 31 (2015).Google Scholar
16.Shane Tubbs, R.J.S.R., Rizk, E., Shoja, M.M., Loukas, M., and Barbaro, N.: Nerves and Nerve Injuries: Vol 2: Pain, Treatment, Injury, Disease and Future Directions (Academic Press, London, United Kingdom, 2015).Google Scholar
17.Freeman, D.: Top causes of chronic pain plus treatments to help overcome pain. http://www.webmd.com/pain-management/features/causes-pain#1WebMD (2010).Google Scholar
18.Hsieh, F.-Y. and Hsu, S.: 3D bioprinting: a new insight into the therapeutic strategy of neural tissue regeneration. Organogenesis 11, 153 (2015).Google Scholar
19.Georgiou, M., Bunting, S.C.J., Davies, H.A., Loughlin, A.J., Golding, J.P., and Phillips, J.B.: Engineered neural tissue for peripheral nerve repair. Biomaterials 34, 7335 (2013).Google Scholar
20.Xu, Y., Zhang, Z., Chen, X., Li, R., Li, D., and Feng, S.: A silk fibroin/collagen nerve scaffold seeded with a co-culture of Schwann cells and adipose-derived stem cells for sciatic nerve regeneration. PLoS ONE 11, 1 (2016).Google Scholar
21.Johnson, B.N., Lancaster, K.Z., Zhen, G., He, J., Gupta, M.K., Kong, Y.L., Engel, E.A., Krick, K.D., Ju, A., Meng, F., Enquist, L.W., Jia, X., and McAlpine, M.C.: 3D printed anatomical nerve regeneration pathways. Adv. Funct. Mater. 25, 6205 (2015).Google Scholar
22.Angius, D., Wang, H., Spinner, R.J., Gutierrez-Cotto, Y., Yaszemeski, M.J., and Windebank, A.J.: A systematic review of animal models used to study nerve regereration in tissue-engineered scaffolds. Biomaterials 33, 8034 (2013).Google Scholar
23.Evans, G.R.D.: Challenges to nerve regeneration. Semin. Surg. Oncol. 19, 312 (2000).Google Scholar
24.Yongqiang, Z.: Tissue engineering and peripheral nerve regeneration (III)—sciatic nerve regeneration with PDLLA nerve guide. Sci. China, Ser. B, Chem. 44, 419 (2001).Google Scholar
25.Griffith, L.G. and Naughton, G.: Tissue engineering—current challenges and expanding opportunities. Science 295, 1009 (2002).Google Scholar
26.Xm, X., Guénard, V., Kleitman, N., and Mb, B.: Axonal regeneration into Schwann cell-seeded guidance channels grafted into transected adult rat spinal cord. J. Comp. Neurol. 351, 1995 (1995).Google Scholar
27.Rajaram, A., Chen, X.-B., and Schreyer, D.J.: Strategic design and recent fabrication techniques for bioengineered tissue scaffolds to improve peripheral nerve regeneration. Tissue Eng. B, Rev. 18, 454 (2012).Google Scholar
28.Walker, J.M.: Methods in molecular biology. Life Sci. 531, 588 (2009).Google Scholar
29.Kiernan, J. and Rajakumar, R.: Barr's the Human Nervous System: An Anatomical Viewpoint (Williams and Wilkins, Lippincott, 2009).Google Scholar
30.Griffin, M., Malahias, M., Hindocha, S., and Wasim, K.S.: Peripheral nerve injury: principles for repair and regeneration. Open Orthop. J. 8, 199 (2014).Google Scholar
31.Huebner, E.A. and Strittmatter, S.M.: Axon regeneration in the peripheral and central nervous systems. In Cell Biol. Axon, edited by Koenig, E. (Springer Berlin Heidelberg, Berlin, Heidelberg, 2009), pp. 305360.Google Scholar
32.Griffin, J.W., George, R., and Ho, T.: Macrophage systems in peripheral nerves. A review. J. Neuropathol. Exp. Neurol. 52, 553 (1993).Google Scholar
33.Burnett, M.G. and Zager, E.L.: Pathophysiology of peripheral nerve injury: a brief review. Neurosurg. Focus 16, 1 (2004).Google Scholar
34.Rutka, J.T., Apodaca, G., Stern, R., and Rosenblum, M.: The extracellular matrix of the central and peripheral nervous systems: structure and function. J. Neurosurg. 69, 155 (1988).Google Scholar
35.Carbonetto, S.: The extracellular matrix of the nervous system. Trends Neurosci. 7, 382 (1984).Google Scholar
36.Geuna, S., Raimondo, S., Fregnan, F., Haastert-Talini, K., and Grothe, C.: In vitro models for peripheral nerve regeneration. Eur. J. Neurosci. 43, 287 (2016).Google Scholar
37.Parikh, P., Hao, Y., Hosseinkhani, M., Patil, S.B., Huntley, G.W., Tessier-Lavigne, M., and Zou, H.: Regeneration of axons in injured spinal cord by activation of bone morphogenetic protein/Smad1 signaling pathway in adult neurons. Proc. Natl. Acad. Sci. USA 108, E99 (2011).Google Scholar
38.Yin, Z.-S., Zhang, H., Bo, W., and Gao, W.: Erythropoietin promotes functional recovery and enhances nerve regeneration after peripheral nerve injury in rats. AJNR. Am. J. Neuroradiol. 31, 509 (2010).Google Scholar
39.Liu, Z., Gao, W., Wang, Y., Zhang, W., Liu, H., and Li, Z.: Neuregulin-1β regulates outgrowth of neurites and migration of neurofilament 200 neurons from dorsal root ganglial explants in vitro. Peptides 32, 1244 (2011).Google Scholar
40.Gattazzo, F., Urciuolo, A., and Bonaldo, P.: Extracellular matrix: a dynamic microenvironment for stem cell niche. Biochim. Biophys. Acta 1840, 2506 (2014).Google Scholar
41.Subramanian, A., Krishnan, U.M., and Sethuraman, S.: Development of biomaterial scaffold for nerve tissue engineering: biomaterial mediated neural regeneration. J. Biomed. Sci. 16, 108 (2009).Google Scholar
42.Koch, D., Rosoff, W.J., Jiang, J., Geller, H.M., and Urbach, J.S.: Strength in the periphery: growth cone biomechanics and substrate rigidity response in peripheral and central nervous system neurons. Biophys. J. 102, 452 (2012).Google Scholar
43.Lein, P.J., Barnhart, C.D., and Pessah, I.N.: In vitro neurotoxicology. Methods Mol. Biol. 758, 1 (2004).Google Scholar
44.Rahmani, A., Shoae-Hassani, A., Keyhanvar, P., Kheradmand, D., and Darbandi-Azar, A.: Dehydroepiandrosterone stimulates nerve growth factor and brain derived neurotrophic factor in cortical neurons. Adv. Pharmacol. Sci. 2013, 506191 (2013).Google Scholar
45.Greene, L.A., Tischlert, A.S., and Kuffler, S.W.: Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor (sympathetic neurons/cell culture/catecholamines/differentiation/neurites). Cell Biol. 73, 2424 (1976).Google Scholar
46.Hsu, S.H., Kuo, W.C., Chen, Y.T., Yen, C.T., Chen, Y.F., Chen, K.S., Huang, W.C., and Cheng, H.: New nerve regeneration strategy combining laminin-coated chitosan conduits and stem cell therapy. Acta Biomater. 9, 6606 (2013).Google Scholar
47.Crapo, P.M., Medberry, C.J., Reing, J.E., Tottey, S., van der Merwe, Y., Jones, K.E., and Badylak, S.F.: Biologic scaffolds composed of central nervous system extracellular matrix. Biomaterials 33, 3539 (2012).Google Scholar
48.Shi, Z., Gao, H., Feng, J., Ding, B., Cao, X., Kuga, S., Wang, Y., Zhang, L., and Cai, J.: In situ synthesis of robust conductive cellulose/polypyrrole composite aerogels and their potential application in nerve regeneration. Angew. Chemie – Int. Ed. 53, 5380 (2014).Google Scholar
49.Li, G., Zhang, L., Wang, C., Zhao, X., Zhu, C., Zheng, Y., Wang, Y., Zhao, Y., and Yang, Y.: Effect of silanization on chitosan porous scaffolds for peripheral nerve regeneration. Carbohydr. Polym. 101, 718 (2014).Google Scholar
50.Pateman, C.J., Harding, A.J., Glen, A., Taylor, C.S., Christmas, C.R., Robinson, P.P., Rimmer, S., Boissonade, F.M., Claeyssens, F., and Haycock, J.W.: Nerve guides manufactured from photocurable polymers to aid peripheral nerve repair. Biomaterials 49, 77 (2015).Google Scholar
51.Daud, M.F.B., Pawar, K.C., Claeyssens, F., Ryan, A.J., and Haycock, J.W.: An aligned 3D neuronal-glial co-culture model for peripheral nerve studies. Biomaterials 33, 5901 (2012).Google Scholar
52.Kim, J.I., Hwang, T.I., Aguilar, L.E., Park, C.H., and Kim, C.S.: A controlled design of aligned and random nanofibers for 3D Bi-functionalized nerve conduits fabricated via a novel electrospinning set-up. Sci. Rep. 6, 23761 (2016).Google Scholar
53.Schuh, C.M.A.P., Morton, T.J., Banerjee, A., Grasl, C., Schima, H., Schmidhammer, R., Redl, H., and Ruenzler, D.: Activated Schwann cell-like cells on aligned fibrin-poly(lactic-co-glycolic acid) structures: a novel construct for application in peripheral nerve regeneration. Cells Tissues Org. 200, 287 (2015).Google Scholar
54.Wang, A., Tang, Z., Park, I.-H., Zhu, Y., Patel, S., Daley, G.Q., and Li, S.: Induced pluripotent stem cells for neural tissue engineering. Biomaterials 32, 5023 (2011).Google Scholar
55.Oliveira, J.T., Mostacada, K., de Lima, S., and Martinez, A.M.B.: Bone marrow mesenchymal stem cell transplantation for improving nerve regeneration. Int. Rev. Neurobiol. 108, 59 (2013).Google Scholar
56.Tohill, M., Mantovani, C., Wiberg, M., and Terenghi, G.: Rat bone marrow mesenchymal stem cells express glial markers and stimulate nerve regeneration. Neurosci. Lett. 362, 200 (2004).Google Scholar
57.Najafabadi, M.M., Bayati, V., Orazizadeh, M., Hashemitabar, M., and Absalan, F.: Impact of cell density on differentiation efficiency of rat adipose-derived stem cells into Schwann-like cells. Int. J. Stem Cells 9, 213 (2016).Google Scholar
58.Higginson, J.R. and Barnett, S.C.: The culture of olfactory ensheathing cells (OECs)—a distinct glial cell type. Exp. Neurol. 229, 2 (2011).Google Scholar
59.Nazareth, L., Lineburg, K.E., Chuah, M.I., Tello Velasquez, J., Chehrehasa, F., St John, J.A., and Ekberg, J.A.K.: Olfactory ensheathing cells are the main phagocytic cells that remove axon debris during early development of the olfactory system. J. Comp. Neurol. 523, 479 (2015).Google Scholar
60.Panni, P., Ferguson, I.A., Beacham, I., Mackay-Sim, A., Ekberg, J.A.K., and St John, J.A.: Phagocytosis of bacteria by olfactory ensheathing cells and Schwann cells. Neurosci. Lett. 539, 65 (2013).Google Scholar
61.Silva, N.A., Cooke, M.J., Tam, R.Y., Sousa, N., Salgado, A.J., Reis, R.L., and Shoichet, M.S.: The effects of peptide modified gellan gum and olfactory ensheathing glia cells on neural stem/progenitor cell fate. Biomaterials 33, 6345 (2012).Google Scholar
62.Ruitenberg, M.J., Vukovic, J., Sarich, J., Busfield, S.J., and Plant, G.W.: Olfactory ensheathing cells: characteristics, genetic engineering, and therapeutic potential. J. Neurotrauma 23, 468 (2006).Google Scholar
63.Mokarram, N., Merchant, A., Mukhatyar, V., Patel, G., and Bellamkonda, R.V.: Effect of modulating macrophage phenotype on peripheral nerve repair. Biomaterials 33, 8793 (2012).Google Scholar
64.Niemi, J.P., DeFrancesco-Lisowitz, A., Roldán-Hernández, L., Lindborg, J.A., Mandell, D., and Zigmond, R.E.: A critical role for macrophages near axotomized neuronal cell bodies in stimulating nerve regeneration. J. Neurosci. 33, 16236 (2013).Google Scholar
65.Chen, P., Piao, X., and Bonaldo, P.: Role of macrophages in Wallerian degeneration and axonal regeneration after peripheral nerve injury. Acta Neuropathol. 130, 605 (2015).Google Scholar
66.Parrinello, S., Napoli, I., Ribeiro, S., Digby, P.W., Fedorova, M., Parkinson, D.B., Doddrell, R.D.S., Nakayama, M., Adams, R.H., and Lloyd, A.C.: EphB signaling directs peripheral nerve regeneration through Sox2-dependent Schwann cell sorting. Cell 143, 145 (2010).Google Scholar
67.Cattin, A.L., Burden, J.J., Van Emmenis, L., MacKenzie, F.E., Hoving, J.J.A., Garcia Calavia, N., Guo, Y., McLaughlin, M., Rosenberg, L.H., Quereda, V., Jamecna, D., Napoli, I., Parrinello, S., Enver, T., Ruhrberg, C., and Lloyd, A.C.: Macrophage-induced blood vessels guide schwann cell-mediated regeneration of peripheral nerves. Cell 162, 1127 (2015).Google Scholar
68.Goers, L., Freemont, P., and Polizzi, K.M.: Co-culture systems and technologies: taking synthetic biology to the next level. J. R. Soc. Interface 11, 20140065 (2014).Google Scholar
69.Kraus, D., Boyle, V., Leibig, N., Stark, G.B., and Penna, V.: The neuro-spheroid-a novel 3D in vitro model for peripheral nerve regeneration. J. Neurosci. Methods 246, 97 (2015).Google Scholar
70.Gonzalez-Perez, F., Udina, E., and Navarro, X.: Extracellular matrix components in peripheral nerve regeneration. Int. Rev. Neurobiol. 108, 257 (2013).Google Scholar
71.Khaing, Z.Z. and Schmidt, C.E.: Advances in natural biomaterials for nerve tissue repair. Neurosci. Lett. 519, 103 (2012).Google Scholar
72.Parenteau-Bareil, R., Gauvin, R., and Berthod, F.: Collagen-based biomaterials for tissue engineering applications. Materials (Basel). 3, 1863 (2010).Google Scholar
73.Hu, Y., Wu, Y., Gou, Z., Tao, J., Zhang, J., Liu, Q., Kang, T., Jiang, S., Huang, S., He, J., Chen, S., Du, Y., Gou, M., Faroni, A., Mobasseri, S.A., Kingham, P.J., Reid, A.J., Chhabra, A., Ahlawat, S., Belzberg, A., Andreseik, G., Xie, J., Gu, X., Ding, F., Williams, D.F., Bell, J.H., Haycock, J.W., Kehoe, S., Zhang, X.F., Boyd, D., Koshy, S.T., Ferrante, T.C., Lewin, S.A., Mooney, D.J., Chang, J.Y., Chen, Y.S., Yue, K., Qi, C., Yan, X., Huang, C., Melerzanov, A., Du, Y., Gamez, E., Nichol, J.W., Suri, S., Li, Y., Kolar, M.K., Kingham, P.J., Heinemeyer, O., Reimers, C.D., Johnson, B.N., Pateman, C.J., Lin, D., Murphy, S.V., Atala, A., Morrison, R.J., Pati, F., Zhu, S., Hu, N., Widgerow, A.D., Salibian, A.A., Lalezari, S., Evans, G.R., Khalifian, S., Angius, D., Huang, C., Niu, Y., Xu, H., Hsueh, Y.Y., He, Y., Xue, G.H., Fu, J.Z., Park, J.H., Jung, J.W., Kang, H.W., Cho, D.W., Lee, M., Dunn, J.C., Wu, B.M., Yao, L., Bender, M.D., Bennett, J.M., Waddell, R.L., Doctor, J.S., Marra, K.G., Yao, L., Billiar, K.L., Windebank, A.J., Pandit, A., Cheng, B., Lu, S., Fu, X., Kokai, L.E., Lin, Y.C., Oyster, N.M., Marra, K.G., Chhabra, A., Williams, E.H., Wang, K.C., Dellon, A.L., Carrino, J.A., Wolf, M., Yamada, K.M., Cukierman, E., Liu, G., Santiago, L.Y., Clavijo-Alvarez, J., Brayfield, C., Rubin, J.P., Marra, K.G., Shen, C.C., Yang, Y.C., Liu, B.S., Kingham, P.J., di Summa, P.G., Lee, J.Y., Choi, B., Wu, B., Lee, M., Tseng, T.C., Hsu, S.H., Bain, J.R., Mackinnon, S.E., and Hunter, D.A.: 3D-engineering of cellularized conduits for peripheral nerve regeneration. Sci. Rep. 6, 32184 (2016).Google Scholar
74.Painter, P.C. and Coleman, M.M.: Essentials of Polymer Science and Engineering (DEStech Publications, Inc., Lancaster, Pennsylvania, 2009).Google Scholar
75.Brown, R.A. and Phillips, J.B.: Cell responses to biomimetic protein scaffolds used in tissue repair and engineering. Int. Rev. Cytol. 262, 75 (2007).Google Scholar
76.Wenger, M.P.E., Bozec, L., Horton, M.A., and Mesquida, P.: Mechanical properties of collagen fibrils. Biophys. J. 93, 1255 (2007).Google Scholar
77.Suri, S., Han, L.-H., Zhang, W., Singh, A., Chen, S., and Schmidt, C.E.: Solid freeform fabrication of designer scaffolds of hyaluronic acid for nerve tissue engineering. Biomed. Microdevices 13, 983 (2011).Google Scholar
78.Vindigni, V., Cortivo, R., Iacobellis, L., Abatangelo, G., and Zavan, B.: Hyaluronan benzyl ester as a scaffold for tissue engineering. Int. J. Mol. Sci. 10, 2972 (2009).Google Scholar
79.Guan, S., Zhang, X.-L., Lin, X.-M., Liu, T.-Q., Ma, X.-H., and Cui, Z.-F.: Chitosan/gelatin porous scaffolds containing hyaluronic acid and heparan sulfate for neural tissue engineering. J. Biomater. Sci. Polym. Ed. 24, 999 (2013).Google Scholar
80.Kogan, G., Šoltés, L., Stern, R., and Gemeiner, P.: Hyaluronic acid: a natural biopolymer with a broad range of biomedical and industrial applications. Biotechnol. Lett. 29, 17 (2007).Google Scholar
81.Falcone, S.J., Palmeri, D., Berg, R.A., Galus, R., Antiszko, M., and Wlodarski, P.: Biomedical applications of hyaluronic acid. Polysaccharides Drug Deliv. Pharm. Appl. 20, 155 (2006).Google Scholar
82.Collins, M.N.: Hyaluronic Acid for Biomedical and Pharmaceutical Applications (Smithers Rapra Technology, Shropshire, United Kingdom, 2014).Google Scholar
83.Nomura, H., Tator, C.H., and Shoichet, M.S.: Bioengineered strategies for spinal cord repair. J. Neurotrauma 234, 496 (2006).Google Scholar
84.Vepari, C. and Kaplan, D.L.: Silk as a biomaterial. Prog. Polym. Sci. 32, 991 (2007).Google Scholar
85.Liu, B.-S., Yao, C.-H., Hsu, S.-H., Yeh, T.-S., Chen, Y.-S., and Kao, S.-T.: A novel use of genipin-fixed gelatin as extracellular matrix for peripheral nerve regeneration. J. Biomater. Appl. 19, 21 (2004).Google Scholar
86.Nie, X., Deng, M., Yang, M., Liu, L., Zhang, Y., and Wen, X.: Axonal regeneration and remyelination evaluation of chitosan/gelatin-based nerve guide combined with transforming growth factor-β1 and Schwann cells. Cell Biochem. Biophys. 68, 163 (2014).Google Scholar
87.Koudehi, M.F., Fooladi, A.A.I., Mansoori, K., Jamalpoor, Z., Amiri, A., and Nourani, M.R.: Preparation and evaluation of novel nano-bioglass/gelatin conduit for peripheral nerve regeneration. J. Mater. Sci. Mater. Med. 25, 363 (2014).Google Scholar
88.Ikeda, M., Uemura, T., Takamatsu, K., Okada, M., Kazuki, K., Tabata, Y., Ikada, Y., and Nakamura, H.: Acceleration of peripheral nerve regeneration using nerve conduits in combination with induced pluripotent stem cell technology and a basic fibroblast growth factor drug delivery system. J. Biomed. Mater. Res. A 102, 1370 (2014).Google Scholar
89.Liu, B.S.: Fabrication and evaluation of a biodegradable proanthocyanidin-crosslinked gelatin conduit in peripheral nerve repair. J. Biomed. Mater. Res. A 87, 1092 (2008).Google Scholar
90.Chen, Y., Chang, J., Cheng, C., Tsai, F., Yao, C., and Liu, B.: An in vivo evaluation of a biodegradable genipin-cross-linked gelatin peripheral nerve guide conduit material. 26, 3911 (2005).Google Scholar
91.Arslantunali, D., Dursun, T., Yucel, D., Hasirci, N., and Hasirci, V.: Peripheral nerve conduits: technology update. Med. Devices (Auckl). 7, 405 (2014).Google Scholar
92.Raafat, D., Von Bargen, K., Haas, A., and Sahl, H.G.: Insights into the mode of action of chitosan as an antibacterial compound. Appl. Environ. Microbiol. 74, 3764 (2008).Google Scholar
93.Khor, E. and Lim, L.Y.: Implantable applications of chitin and chitosan. Biomaterials 24, 2339 (2003).Google Scholar
94.Chen, S.L., Chen, Z.G., Dai, H.L., Ding, J.X., Guo, J.S., Han, N., Jiang, B.G., Jiang, H.J., Li, J., Li, S.P., Li, W.J., Liu, J., Liu, Y., Ma, J.X., Peng, J., Shen, Y.D., Sun, G.W., Tang, P.F., Wang, G.H., Wang, X.H., Xiang, L.B., Xie, R.G., Xu, J.G., Yu, B., Zhang, L.C., Zhang, P.X., and Zhou, S.L.: Repair, protection and regeneration of peripheral nerve injury. Neural Regen. Res. 10, 1777 (2015).Google Scholar
95.Yang, Y., Gu, X., Tan, R., Hu, W., and Wang, X.: Fabrication and properties of a porous chitin/chitosan conduit for nerve regeneration. Biotechnol. Lett. 2003, 1793 (2004).Google Scholar
96.Nagao, R.J., Lundy, S., Khaing, Z.Z., and Schmidt, C.E.: Functional characterization of optimized acellular peripheral nerve graft in a rat sciatic nerve injury model. Neurol. Res. 33, 600 (2011).Google Scholar
97.International Consensus: Acellular matrices for the treatment of wounds. An Expert Work. Gr. Rev. 1, 16 pp. (2010).Google Scholar
98.Hall, S.: Axonal regeneration through acellular muscle grafts. J. Anat. 190, 57 (1997).Google Scholar
99.Donaldson, J., Shi, R., and Borgens, R.: Polyethylene glycol rapidly restores physiological functions in damaged sciatic nerves of guinea pigs. Neurosurgery 50, 147 (2002).Google Scholar
100.Bittner, G.D., Rokkappanavar, K.K., and Peduzzi, J.D.: Application and implications of polyethylene glycol-fusion as a novel technology to repair injured spinal cords. Neural Regen. Res. 10, 1406 (2015).Google Scholar
101.Zhu, J.: Bioactive modification of poly (ethylene glycol) hydrogels for tissue engineering, biomaterials. 31, 4639 (2010).Google Scholar
102.Lasprilla, A.J.R., Martinez, G.A.R., Lunelli, B.H., Jardini, A.L., and Filho, R.M.: Poly-lactic acid synthesis for application in biomedical devices—a review. Biotechnol. Adv. 30, 321 (2012).Google Scholar
103.Yang, F., Murugan, R., Ramakrishna, S., Wang, X., Ma, Y.X., and Wang, S.: Fabrication of nano-structured porous PLLA scaffold intended for nerve tissue engineering. Biomaterials 25, 1891 (2004).Google Scholar
104.Wang, H.B., Mullins, M.E., Cregg, J.M., Hurtado, A., Oudega, M., Trombley, M.T., and Gilbert, R.J.: Creation of highly aligned electrospun poly-L-lactic acid fibers for nerve regeneration applications. J. Neural Eng. 6, 16001 (2009).Google Scholar
105.Guo, C., Zhou, L., and Lv, J.: Effects of expandable graphite and modified ammonium polyphosphate on the flame-retardant and mechanical properties of wood flour-polypropylene composites. Polym. Polym. Compos. 21, 449 (2013).Google Scholar
106.Makadia, H.K., and Siegel, S.J.: Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers (Basel). 3, 1377 (2011).Google Scholar
107.Lin, K.-M., Shea, J., Gale, B.K., Sant, H., Larrabee, P., and Agarwal, J.: Nerve growth factor released from a novel PLGA nerve conduit can improve axon growth. J. Micromech. Microeng. 26, 45016 (2016).Google Scholar
108.Patrício, T., Domingos, M., Gloria, A., and Bártolo, P.: Characterisation of PCL and PCL/PLA scaffolds for tissue engineering. Proc. CIRP 5, 110 (2013).Google Scholar
109.Eshraghi, S. and Das, S.: Mechanical and microstructural properties of polycaprolactone scaffolds with one-dimensional, two-dimensional, and three-dimensional orthogonally oriented porous architectures produced by selective laser sintering. Acta Biomater. 6, 2467 (2010).Google Scholar
110.Panseri, S., Cunha, C., Lowery, J., Del Carro, U., Taraballi, F., Amadio, S., Vescovi, A., and Gelain, F.: Electrospun micro- and nanofiber tubes for functional nervous regeneration in sciatic nerve transections. BMC Biotechnol. 8, 39 (2008).Google Scholar
111.Forciniti, L., Ybarra, J., Zaman, M.H., and Schmidt, C.E.: Schwann cell response on polypyrrole substrates upon electrical stimulation. Acta Biomater. 10, 2423 (2014).Google Scholar
112.Kang, H.C. and Geckeler, K.E.: Enhanced electrical conductivity of polypyrrole prepared by chemical oxidative polymerization: effect of the preparation technique and polymer additive. Polymer (Guildf). 41, 6931 (2000).Google Scholar
113.Alhosseini, N., Moztarzadeh, F., Mozafari, M., Asgari, S., Dodel, M., Samadikuchaksaraei, A., Kargozar, S., and Jalali, N.: synthesis and characterization of electrospun polyvinyl alcohol nanofibrous scaffolds modified by blending with chitosan for neural tissue engineering. Int. J. Nanomed. 7, 25 (2012).Google Scholar
114.Ye, M., Mohanty, P., and Ghosh, G.: Morphology and properties of poly vinyl alcohol (PVA) scaffolds: impact of process variables. Mater. Sci. Eng. C 42, 289 (2014).Google Scholar
115.Rutkowski, G.E. and Heath, C.A.: Development of a bioartificial nerve graft. II. Nerve regeneration in vitro. Biotechnol. Prog. 18, 373 (2002).Google Scholar
116.Daly, W., Yao, L., Zeugolis, D., Windebank, A., and Pandit, A.: A biomaterials approach to peripheral nerve regeneration: bridging the peripheral nerve gap and enhancing functional recovery. J. R. Soc. Interface 9, 202 (2012).Google Scholar
117.Bell, J.H.A. and Haycock, J.W.: Next generation nerve guides: materials, fabrication, growth factors, and cell delivery. Tissue Eng. B, Rev. 18, 116 (2012).Google Scholar
118.Fregnan, F., Ciglieri, E., Tos, P., Crosio, A., Ciardelli, G., Ruini, F., Tonda-Turo, C., Geuna, S., and Raimondo, S.: Chitosan crosslinked flat scaffolds for peripheral nerve regeneration. Biomed. Mater. 11, 45010 (2016).Google Scholar
119.Hui Hsu, S., Ho, T.T., and Tseng, T.C.: Nanoparticle uptake and gene transfer efficiency for MSCs on chitosan and chitosan-hyaluronan substrates. Biomaterials 33, 3639 (2012).Google Scholar
120.Busilacchi, A., Gigante, A., Mattioli-Belmonte, M., Manzotti, S., and Muzzarelli, R.A.A.: Chitosan stabilizes platelet growth factors and modulates stem cell differentiation toward tissue regeneration. Carbohydr. Polym. 98, 665 (2013).Google Scholar
121.Meyer, C., Stenberg, L., Gonzalez-Perez, F., Wrobel, S., Ronchi, G., Udina, E., Suganuma, S., Geuna, S., Navarro, X., Dahlin, L.B., Grothe, C., and Haastert-Talini, K.: Chitosan-film enhanced chitosan nerve guides for long-distance regeneration of peripheral nerves. Biomaterials 76, 33 (2016).Google Scholar
122.Stenberg, L. and Dahlin, L.B.: Gender differences in nerve regeneration after sciatic nerve injury and repair in healthy and in type 2 diabetic Goto-Kakizaki rats. BMC Neurosci. 15, 107 (2014).Google Scholar
123.Kruse, A.L.D., Luebbers, H.T., Grätz, K.W., and Obwegeser, J.A.: Factors influencing survival of free-flap in reconstruction for cancer of the head and neck: a literature review. Microsurgery 30, 242 (2010).Google Scholar
124.Wrobel, S., Serra, S.C., Ribeiro-Samy, S., Sousa, N., Heimann, C., Barwig, C., Grothe, C., Salgado, A.J., and Haastert-Talini, K.: In vitro evaluation of cell-seeded chitosan films for peripheral nerve tissue engineering. Tissue Eng. A 20, 2339 (2014).Google Scholar
125.Nectow, A.R., Marra, K.G., and Kaplan, D.L.: Biomaterials for the development of peripheral nerve guidance conduits. Tissue Eng. B, Rev. 18, 40 (2012).Google Scholar
126.Uz, M., Sharma, A.D., Adhikari, P., Sakaguchi, D.S., and Mallapragada, S.K.: Development of multifunctional films for peripheral nerve regeneration. Acta Biomater. 56, 141 (2017).Google Scholar
127.Torigoe, K., Tanaka, H.F., Ohkochi, H., Miyasaka, M., Yamanokuchi, H., Yoshidad, K., and Yoshida, T.: Hyaluronan tetrasaccharide promotes regeneration of peripheral nerve: in vivo analysis by film model method. Brain Res. 1385, 87 (2011).Google Scholar
128.Lin, Q. and Peng, W.: 3D printing technologies for tissue engineering in ASME 2014. In Int. Design Engineering Technical Conf. & Computer Information in Engineering Conf. (2014).Google Scholar
129.Murphy, S.V. and Atala, A.: 3D bioprinting of tissues and organs. Nat. Biotechnol. 32, 773 (2014).Google Scholar
130.He, B.: Neural Engineering (Springer International Publishing, New York, 2013).Google Scholar
131.Langer, R. and Vacanti, J.: Tissue engineering. Science 260, 920 (1993).Google Scholar
132.El-Ayoubi, R., Eliopoulos, N., Diraddo, R., Galipeau, J., and Yousefi, A.M.: Design and fabrication of 3D porous scaffolds to facilitate. Tissue Eng. A 14, 1037 (2008).Google Scholar
133.Zhang, J., Zhao, S., Zhu, Y., Huang, Y., Zhu, M., Tao, C., and Zhang, C.: Three-dimensional printing of strontium-containing mesoporous bioactive glass scaffolds for bone regeneration. Acta Biomater. 10, 2269 (2014).Google Scholar
134.Koch, L., Kuhn, S., Sorg, H., Gruene, M., Schlie, S., Gaebel, R., Polchow, B., Reimers, K., Stoelting, S., Ma, N., Vogt, P.M., Steinhoff, G., and Chichkov, B.: Laser printing of skin Cells and human stem cells. Tissue Eng. Part C Methods 16, 847 (2010).Google Scholar
135.Anderson, J.M., Rodriguez, A., and Chang, D.T.: Foreign body reaction to biomaterials. Semin. Immunol. Press 20, 86 (2008).Google Scholar
136.Henstock, J.R., Canham, L.T., and Anderson, S.I.: Silicon: the evolution of its use in biomaterials. Acta Biomater. 11, 17 (2015).Google Scholar
137.Yurie, H., Ikeguchi, R., Aoyama, T., Kaizawa, Y., Tajino, J., Ito, A., Ohta, S., Oda, H., Takeuchi, H., Akieda, S., Tsuji, M., Nakayama, K., and Matsuda, S.: The efficacy of a scaffold-free Bio 3D conduit developed from human fibroblasts on peripheral nerve regeneration in a rat sciatic nerve model. PLoS ONE 12, e0171448 (2017).Google Scholar
138.Danquah, M.K. and Mahato, R.I.: Emerging Trends in Cell and Gene Therapy (Springer International Publishing, New York, 2013).Google Scholar
139.Kapur, T.A. and Shoichet, M.S.: Immobilized concentration gradients of nerve growth factor guide neurite outgrowth. J. Biomed. Mater. Res. A 68, 235 (2004).Google Scholar
140.Soman, P., Tobe, B.T.D., Lee, J.W., Winquist, A.A.M., Singec, I., Vecchio, K.S., Snyder, E.Y., Chen, S., Hall, A., Jolla, L., Winquist, A.A.M., Hall, A., Jolla, L., and Snyder, E.Y.: Three-dimensional scaffolding to investigate neuronal derivatives of human embryonic stem cells. Biomed. Microdevices 14, 829 (2013).Google Scholar
141.Ratner, B., Hoffman, A., Schoen, F., and Lemons, J.: Biomaterials Science: An Introduction to Materials in Medicine (Academic Press, London, United Kingdom, 2013). Chapter II, pp. 1147.Google Scholar
142.Murphy, C.M., Matsiko, A., Haugh, M.G., Gleeson, J.P., and O'Brien, F.J.: Mesenchymal stem cell fate is regulated by the composition and mechanical properties of collagen-glycosaminoglycan scaffolds. J. Mech. Behav. Biomed. Mater. 11, 53 (2012).Google Scholar
143.Haugh, M.G., Murphy, C.M., and O'Brien, F.J.: Novel freeze-drying methods to produce a range of collagen-glycosaminoglycan scaffolds with tailored mean pore sizes. Tissue Eng. C, Methods 16, 887 (2010).Google Scholar
144.Davidenko, N., Gibb, T., Schuster, C., Best, S.M., Campbell, J.J., Watson, C.J., and Cameron, R.E.: Biomimetic collagen scaffolds with anisotropic pore architecture. Acta Biomater. 8, 667 (2012).Google Scholar
145.Hortensius, R.A. and Harley, B.A.C.: The use of bioinspired alterations in the glycosaminoglycan content of collagen-GAG scaffolds to regulate cell activity. Biomaterials 34, 7645 (2013).Google Scholar
146.Her, G.J., Wu, H.C., Chen, M.H., Chen, M.Y., Chang, S.C., and Wang, T.W.: Control of three-dimensional substrate stiffness to manipulate mesenchymal stem cell fate toward neuronal or glial lineages. Acta Biomater. 9, 5170 (2013).Google Scholar
147.Kang, P., Liao, M., Wester, M.R., Leeder, J.S., and Pearce, R.E.: The stress relaxation characteristics of composite matrices etched to produce nanoscale surface features. Ratio 36, 490 (2010).Google Scholar
148.Niu, X, Li, X., Liu, H., Zhou, G., Feng, Q., Cui, F., and Fan, Y.: Homogeneous chitosan/poly(L-Lactide) composite scaffolds prepared by emulsion freeze-drying. J. Biomater. Sci. Polym. Ed. 23, 391 (2012).Google Scholar
149.Zhang, Z. and Cui, H.: Biodegradability and biocompatibility study of poly(chitosan-g-lactic acid) scaffolds. Molecules 17, 3243 (2012).Google Scholar
150.Kozłowska, J. and Sionkowska, A.: Effects of different crosslinking methods on the properties of collagen-calcium phosphate composite materials. Int. J. Biol. Macromol. 74, 397 (2015).Google Scholar
151.Gaudillere, C. and Serra, J.M.: Freeze-casting: fabrication of highly porous and hierarchical ceramic supports for energy applications. Boletín la Soc. Española Cerámica y Vidr. 55, 45 (2016).Google Scholar
152.Wegst, U.G.K., Schecter, M., Donius, A.E., and Hunger, P.M.: Biomaterials by freeze casting. Phil. Trans. R. Soc. A 368, 2099 (2010).Google Scholar
153.Francis, N.L., Hunger, P.M., Donius, A.E., Riblett, B.W., Zavaliangos, A., Wegst, U.G.K., and Wheatley, M.A.: An ice-templated, linearly aligned chitosan-alginate scaffold for neural tissue engineering. J. Biomed. Mater. Res. A 101, 3493 (2013).Google Scholar
154.Xie, J., Liu, W., Macewan, M.R., Bridgman, P.C., and Xia, Y.: Neurite outgrowth on electrospun nano fibers with uniaxial alignment: the effects of fiber density, surface coating, and supporting substrate ACS Nano 8, 1878 (2015).Google Scholar
155.tae Kim, Y., Haftel, V.K., Kumar, S., and Bellamkonda, R.V.: The role of aligned polymer fiber-based constructs in the bridging of long peripheral nerve gaps. Biomaterials 29, 3117 (2008).Google Scholar
156.Huang, Z.M., Zhang, Y.Z., Kotaki, M., and Ramakrishna, S.: A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol. 63, 2223 (2003).Google Scholar
157.Castilla-Casadiego, D.A., Ramos-Avilez, H.V., Herrera-Posada, S., Calcagno, B., Loyo, L., Shipmon, J., Acevedo, A., Quintana, A., and Almodovar, J.: Engineering of a stable collagen nanofibrous scaffold with tunable fiber diameter, alignment, and mechanical properties. Macromol. Mater. Eng. 301, 1064 (2016).Google Scholar
158.Castilla-Casadiego, D.A., Maldonado, M., Sundaram, P., and Almodovar, J.: “Green” electrospinning of a collagen/hydroxyapatite composite nanofibrous scaffold. MRS Commun. 6, 402407 (2016).Google Scholar
159.Wang, H.B., Mullins, M.E., Cregg, J.M., Hurtado, A., Oudega, M., Trombley, M.T., and Gilbert, R.J.: Creation of highly aligned electrospun poly-L-lactic acid fibers for nerve regeneration applications. J. Neural Eng 6, 16001 (2009).Google Scholar
160.Corey, J.M., Lin, D.Y., Mycek, K.B., Chen, Q., Samuel, S., Feldman, E.L., and Martin, D.C.: Aligned electrospun nanofibers specify the direction of dorsal root ganglia neurite growth. J. Biomed. Mater. Res. A 83, 636 (2007).Google Scholar
161.Gnavi, S., Fornasari, B.E., Tonda-Turo, C., Ciardelli, G., Zanetti, M., Geuna, S., and Perroteau, I.: The influence of electrospun fibre size on Schwann cell behaviour and axonal outgrowth. Mater. Sci. Eng. C 48, 620 (2015).Google Scholar
162.Yao, L., O'Brien, N., Windebank, A., and Pandit, A.: Orienting neurite growth in electrospun fibrous neural conduits. J. Biomed. Mater. Res. B, Appl. Biomater. 90B, 483 (2009).Google Scholar
163.Das, S., Sharma, M., Saharia, D., Sarma, K.K., Sarma, M.G., Borthakur, B.B., and Bora, U.: Data in support of in vivo studies of silk based gold nano-composite conduits for functional peripheral nerve regeneration. Data Br. 4, 315 (2015).Google Scholar
164.Zuidema, J.M., Provenza, C., Caliendo, T., Dutz, S., and Gilbert, R.J.: Magnetic NGF-releasing PLLA/iron oxide nanoparticles direct extending neurites and preferentially guide neurites along aligned electrospun microfibers. ACS Chem. Neurosci. 6, 1781 (2015).Google Scholar
165.Sperling, L.E., Reis, K.P., Pozzobon, L.G., Girardi, C.S., and Pranke, P.: Influence of random and oriented electrospun fibrous poly(lactic-co-glycolic acid) scaffolds on neural differentiation of mouse embryonic stem cells. J. Biomed. Mater. Res. A 105, 1333 (2017).Google Scholar
166.Schuh, C.M.A.P., Morton, T.J., Banerjee, A., Grasl, C., Schima, H., Schmidhammer, R., Redl, H., and Ruenzler, D.: Activated Schwann cell-Like cells on aligned fibrin-poly(lactic-co-glycolic acid) structures: a novel construct for application in peripheral nerve regeneration. Cells Tissues Organs. 200, 287 (2015).Google Scholar
167.Basu, A., Reddy, K., Doppalapudi, S., Domb, A.J., Khan, W., and Peg, P.L.A.: Poly (lactic acid) based hydrogels. Adv. Drug Deliv. Rev. 107, 192 (2016).Google Scholar
168.Peppas, B.N.A., Hilt, J.Z., Khademhosseini, A., and Langer, R.: Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv. Mater. 18, 1345 (2006).Google Scholar
169.Hilderbrand, A.M., Ovadia, E.M., Rehmann, M.S., Kharkar, P.M., Guo, C., and Kloxin, A.M.: Biomaterials for 4D stem cell culture. Curr. Opin. Solid State Mater. Sci. 20, 212 (2016).Google Scholar
170.Lin, S.C.-Y., Wang, Y., Wertheim, D.F., and Coombes, A.G.A.: Production and in vitro evaluation of macroporous, cell-encapsulating alginate fibres for nerve repair. Mater. Sci. Eng. C 73, 653 (2017).Google Scholar
171.Peppas, N.A., Bures, P., Leobandung, W., and Ichikawa, H.: Hydrogels in pharmaceutical formulations. Eur. J. Pharm. Biopharm. 50, 27 (2000).Google Scholar
172.Lee, K.Y. and Mooney, D.J.: Alginate: properties and biomedical applications. Prog. Polym. Sci. 37, 106 (2012).Google Scholar
173.Tonda-Turo, I.P.C., Gnavi, S., Ruini, F., Gambarotta, G., Gioffredi, E., Chiono, V., and Ciardelli, G.: Development and characterization of novel agar and gelatin injectable hydrogel as filler for peripheral nerve guidance channels. Tissue Eng. Regen. Med. 11, 197 (2014).Google Scholar
174.Albrecht, D.R., Underhill, G.H., Wassermann, T.B., Sah, R.L., and Bhatia, S.N.: Probing the role of multicellular organization in three-dimensional microenvironments. Nat. Methods 3, 369 (2006).Google Scholar
175.Lin, R.Z. and Chang, H.Y.: Recent advances in three-dimensional multicellular spheroid culture for biomedical research. Biotechnol. J. 3, 1172 (2008).Google Scholar
176.Cargill, R.S., Dee, K.C., and Malcolm, S.: An assessment of the strength of NG108-15 cell adhesion to chemically modified surfaces. Biomaterials 20, 2417 (1999).Google Scholar
177.Korff, T. and Augustin, H.G.: Integration of endothelial cells in multicellular spheroids prevents apoptosis and induces differentiation. – PubMed – NCBI. J. Cell Biol. 143, 1341 (1998).Google Scholar
178.Koppes, A.N., Keating, K.W., McGregor, A.L., Koppes, R.A., Kearns, K.R., Ziemba, A.M., McKay, C.A., Zuidema, J.M., Rivet, C.J., Gilbert, R.J., and Thompson, D.M.: Robust neurite extension following exogenous electrical stimulation within single walled carbon nanotube-composite hydrogels. Acta Biomater. 39, 34 (2016).Google Scholar
179.Cunha, C., Panseri, S., Villa, O., Silva, D., and Gelain, F.: 3D culture of adult mouse neural stem cells within functionalized self-assembling peptide scaffolds. Int. J. Nanomed. 6, 943 (2011).Google Scholar
180.Das, K.P., Freudenrich, T.M., and Mundy, W.R.: Assessment of PC12 cell differentiation and neurite growth: a comparison of morphological and neurochemical measures. Neurotoxicol. Teratol. 26, 397 (2004).Google Scholar
181.Wu, Y., Wang, L., Guo, B., Shao, Y., and Ma, P.X.: Electroactive biodegradable polyurethane significantly enhanced Schwann cells myelin gene expression and neurotrophin secretion for peripheral nerve tissue engineering. Biomaterials 87, 18 (2016).Google Scholar
182.Gao, R., Xiu, W., Zhang, L., Zang, R., Yang, L., Wang, C., Wang, M., Wang, M., Yi, L., Tang, Y., Gao, Y., Wang, H., Xi, J., Liu, W., Wang, Y., Wen, X., Yu, Y., Zhang, Y., Chen, L., Chen, J., and Gao, S.: Direct induction of neural progenitor cells transiently passes through a partially reprogrammed state. Biomaterials 119, 53 (2017).Google Scholar
183.Boeshore, K.L., Schreiber, R.C., Vaccariello, S.A., Sachs, H.H., Salazar, R., Lee, J., Ratan, R.R., Leahy, P., and Zigmond, R.E.: Novel changes in gene expression following axotomy of a sympathetic ganglion: A microarray analysis. J. Neurobiol. 59, 216 (2004).Google Scholar
184.Ragelle, H., Naba, A., Larson, B.L., Zhou, F., Prijić, M., Whittaker, C.A., Del Rosario, A., Langer, R., Hynes, R.O., and Anderson, D.G.: Comprehensive proteomic characterization of stem cell-derived extracellular matrices. Biomaterials 128, 147 (2017).Google Scholar
185.Dumont, C.M., Karande, P., and Thompson, D.M.: Rapid assessment of migration and proliferation: a novel 3D high-throughput platform for rational and combinatorial screening of tissue-specific biomaterials. Tissue Eng. C, Methods 20, 620 (2014).Google Scholar