Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T22:12:52.954Z Has data issue: false hasContentIssue false

A perspective on bio-inspired interfacial systems for solar clean-water generation

Published online by Cambridge University Press:  11 February 2019

Rui Feng
Affiliation:
State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, P. R. China
Yiming Qiao
Affiliation:
State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, P. R. China
Chengyi Song*
Affiliation:
State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, P. R. China
*
Address all correspondence to Chengyi Song at chengyi2013@sjtu.edu.cn
Get access

Abstract

With rapid growth of human population and decreasing labefaction of our environment, the usable fresh water is facing severe pollution and global shortage. Bio-inspired engineering and biotemplate-directed engineering thus offer great promise in clean water generation, including desalination, decontamination, and disinfection. This perspective begins with an introduction of solar energy-based interfacial evaporation system inspired by the natural systems of organisms, and then provides a review of the development and recent progress of the interfacial evaporation system for clean water generation. The long-term outlook in this field of clean water generation using bio-inspired interfacial systems is also discussed.

Type
Prospective Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Rui Feng and Yiming Qiao equally contributed to this paper.

References

1.Montgomery, M.A. and Elimelech, M.: Water and sanitation in developing countries: Including health in the equation. Environ. Sci. Technol. 41, 17 (2007).Google Scholar
2.Shannon, M.A., Bohn, P.W., Elimelech, M., Georgiadis, J.G., Marinas, B.J., and Mayes, A.M.: Science and technology for water purification in the coming decades. Nature 452, 301 (2008).Google Scholar
3.Zhou, Y. and Tol, R.S.J.: Evaluating the costs of desalination and water transport. Water Resour. Res. 41, W03003 (2005).Google Scholar
4.Veerapaneni, S., Long, B., Freeman, S., and Bond, R.: Reducing energy consumption for seawater desalination. J. Am. Water Works Assoc. 99, 95 (2007).Google Scholar
5.McCutcheon, J.R., McGinnis, R.L., and Elimelech, M.: A novel ammonia-carbon dioxide forward (direct) osmosis desalination process. Desalination 174, 1 (2005).Google Scholar
6.Mathioulakis, E., Belessiotis, V., and Delyannis, E.: Desalination by using alternative energy: review and state-of-the-art. Desalination 203, 346 (2007).Google Scholar
7.Schwarzenbach, R.P., Escher, B.I., Fenner, K., Hofstetter, T.B., Johnson, C.A., von Gunten, U., and Wehrli, B.: The challenge of micropollutants in aquatic systems. Science 313, 1072 (2006).Google Scholar
8.Pitman, G.K.: Bridging Troubled Waters—Assessing The World Bank Water Resources Strategy (World Bank Publications, Washington DC, 2002).Google Scholar
9.W.H. Organization: Emerging Issues in Water and Infectious Disease (World Health Organization, Geneva, 2003), pp. 122.Google Scholar
10.Elimelech, M. and Phillip, W.A.: The future of seawater desalination: energy, technology, and the environment. Science 333, 712 (2011).Google Scholar
11.Homaeigohar, S. and Elbahri, M.: Graphene membranes for water desalination. NPG Asia Mater. 9, e427 (2017).Google Scholar
12.Werber, J.R., Osuji, C.O., and Elimelech, M.: Materials for next-generation desalination and water purification membranes. Nat. Rev. Mater. 1, 16018 (2016).Google Scholar
13.Li, Q., Liang, W., and Shang, J.K.: Enhanced visible-light absorption from PdO nanoparticles in nitrogen-doped titanium oxide thin films. Appl. Phys. Lett. 90, 063109 (2007).Google Scholar
14.Fisher, L., Ostovapour, S., Kelly, P., Whitehead, K.A., Cooke, K., Storgards, E., and Verran, J.: Molybdenum doped titanium dioxide photocatalytic coatings for use as hygienic surfaces: the effect of soiling on antimicrobial activity. Biofouling 30, 911 (2014).Google Scholar
15.Neumann, O., Urban, A.S., Day, J., Lal, S., Nordlander, P., and Halas, N.J.: Solar vapor generation enabled by nanoparticles. ACS Nano 7, 42 (2013).Google Scholar
16.Fournier, D., Hawari, J., Streger, S.H., McClay, K., and Hatzinger, P.B.: Biotransformation of N-nitrosodimethylamine by Pseudomonas mendocina KR1. Appl. Environ. Microb. 72, 6693 (2006).Google Scholar
17.Kraemer, S.M., Xu, J.D., Raymond, K.N., and Sposito, G.: Adsorption of Pb(II) and Eu(III) by oxide minerals in the presence of natural and synthetic hydroxamate siderophores. Environ. Sci. Technol. 36, 1287 (2002).Google Scholar
18.Daigger, G.T., Rittmann, B.E., Adham, S., and Andreottola, G.: Are membrane bioreactors ready for widespread application? Environ. Sci. Technol. 39, 399a (2005).Google Scholar
19.Nednoor, P., Gavalas, V.G., Chopra, N., Hinds, B.J., and Bachas, L.G.: Carbon nanotube based biomimetic membranes: mimicking protein channels regulated by phosphorylation. J. Mater. Chem. 17, 1755 (2007).Google Scholar
20.Liu, K.S. and Jiang, L.: Bio-inspired design of multiscale structures for function integration. Nano Today 6, 155 (2011).Google Scholar
21.Tao, P., Shang, W., Song, C.Y., Shen, Q.C., Zhang, F.Y., Luo, Z., Yi, N., Zhang, D., and Deng, T.: Bioinspired engineering of thermal materials. Adv. Mater. 27, 428 (2015).Google Scholar
22.Graham, J.M.G.L.E. and Wilcox, L.W.: Plant Biology (Prentice Hall, Pearson Education, Inc., Upper Saddle River, NJ, USA, 2003).Google Scholar
23.Koch, K. and Barthlott, W.: Superhydrophobic and superhydrophilic plant surfaces: an inspiration for biomimetic materials. Philos. Trans. R. Soc. A 367, 1487 (2009).Google Scholar
24.Wang, Z.H., Liu, Y.M., Tao, P., Shen, Q.C., Yi, N., Zhang, F.Y., Liu, Q.L., Song, C.Y., Zhang, D., Shang, W., and Deng, T.: Bio-inspired evaporation through plasmonic film of nanoparticles at the air–water interface. Small 10, 3234 (2014).Google Scholar
25.Liu, Y.M., Yu, S.T., Feng, R., Bernard, A., Liu, Y., Zhang, Y., Duan, H.Z., Shang, W., Tao, P., Song, C.Y., and Deng, T.: A bioinspired, reusable, paper-based system for high-performance large-scale evaporation. Adv. Mater. 27, 2768 (2015).Google Scholar
26.Ghasemi, H., Ni, G., Marconnet, A.M., Loomis, J., Yerci, S., Miljkovic, N., and Chen, G.: Solar steam generation by heat localization. Nat. Commun. 5, 4449 (2014).Google Scholar
27.Yang, X., Yang, Y., Fu, L., Zou, M., Li, Z., Cao, A., and Yuan, Q.: An ultrathin flexible 2D membrane based on single-walled nanotube–MoS2 hybrid film for high-performance solar steam generation. Adv. Funct. Mater. 28, 1704505 (2018).Google Scholar
28.Hu, X.Z., Xu, W.C., Zhou, L., Tan, Y.L., Wang, Y., Zhu, S.N., and Zhu, J.: Tailoring graphene oxide-based aerogels for efficient solar steam generation under one sun. Adv. Mater. 29, 1604031 (2017).Google Scholar
29.Zhou, L., Tan, Y.L., Wang, J.Y., Xu, W.C., Yuan, Y., Cai, W.S., Zhu, S.N., and Zhu, J.: 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination. Nat. Photonics 10, 393 (2016).Google Scholar
30.Yao, J.D., Zheng, Z.Q., and Yang, G.W.: Alloying-assisted phonon engineering of layered BiInSe3@nickel foam for efficient solar-enabled water evaporation. Nanoscale 9, 16396 (2017).Google Scholar
31.Ding, D.D., Huang, W.C., Song, C.Q., Yan, M., Guo, C.S., and Liu, S.Q.: Non-stoichiometric MoO3−x quantum dots as a light-harvesting material for interfacial water evaporation. Chem. Commun. 53, 6744 (2017).Google Scholar
32.Li, R.Y., Zhang, L.B., Shi, L., and Wang, P.: MXene Ti3C2: an effective 2D light-to-heat conversion material. ACS Nano 11, 3752 (2017).Google Scholar
33.Zhang, P.P., Li, J., Lv, L.X., Zhao, Y., and Qu, L.T.: Vertically aligned graphene sheets membrane for highly efficient solar thermal generation of clean water. ACS Nano 11, 5087 (2017).Google Scholar
34.Yin, Z., Wang, H.M., Jian, M.Q., Li, Y.S., Xia, K.L., Zhang, M.C., Wang, C.Y., Wang, Q., Ma, M., Zheng, Q.S., and Zhang, Y.Y.: Extremely black vertically aligned carbon nanotube arrays for solar steam generation. ACS Appl. Mater. Interfaces 9, 28596 (2017).Google Scholar
35.Bae, K., Kang, G., Cho, S.K., Park, W., Kim, K., and Padilla, W.J.: Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation. Nat. Commun. 6, 10103 (2015).Google Scholar
36.Ito, Y., Tanabe, Y., Han, J.H., Fujita, T., Tanigaki, K., and Chen, M.W.: Multifunctional porous graphene for high-efficiency steam generation by heat localization. Adv. Mater. 27, 4302 (2015).Google Scholar
37.Wang, G., Fu, Y., Guo, A.K., Mei, T., Wang, J.Y., Li, J.H., and Wang, X.B.: Reduced graphene oxide-polyurethane nanocomposite foam as a reusable photoreceiver for efficient solar steam generation. Chem. Mater. 29, 5629 (2017).Google Scholar
38.Zhou, L., Tan, Y.L., Ji, D.X., Zhu, B., Zhang, P., Xu, J., Gan, Q.Q., Yu, Z.F., and Zhu, J.: Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation. Sci. Adv. 2, e1501227 (2016).Google Scholar
39.Ni, G., Li, G., Boriskina, S.V., Li, H.X., Yang, W.L., Zhang, T.J., and Chen, G.: Steam generation under one sun enabled by a floating structure with thermal concentration. Nat. Energy 1, 16126 (2016).Google Scholar
40.Yu, S.T., Zhang, Y., Duan, H.Z., Liu, Y.M., Quan, X.J., Tao, P., Shang, W., Wu, J.B., Song, C.Y., and Deng, T.: The impact of surface chemistry on the performance of localized solar-driven evaporation system. Sci. Rep.-Uk 5, 13600 (2015).Google Scholar
41.Li, Y.J., Gao, T.T., Yang, Z., Chen, C.J., Luo, W., Song, J.W., Hitz, E., Jia, C., Zhou, Y.B., Liu, B.Y., Yang, B., and Hu, L.B.: 3D-printed, all-in-one evaporator for high-efficiency solar steam generation under 1 sun illumination. Adv. Mater. 29, 1700981 (2017).Google Scholar
42.Li, X.Q., Xu, W.C., Tang, M.Y., Zhou, L., Zhu, B., Zhu, S.N., and Zhu, J.: Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path. Proc. Natl. Acad. Sci. USA 113, 13953 (2016).Google Scholar
43.Liu, Z., Song, H., Ji, D., Li, C., Cheney, A., Liu, Y., Zhang, N., Zeng, X., Chen, B., and Gao, J.: Solar vapor generation: extremely cost-effective and efficient solar vapor generation under nonconcentrated illumination using thermally isolated black paper (Global Challenges 2/2017). Global Challenges 1, 1600003 (2017).Google Scholar
44.Li, X.Q., Lin, R.X., Ni, G., Xu, N., Hu, X.Z., Zhu, B., Lv, G.X., Li, J.L., Zhu, S.N., and Zhu, J.: Three-dimensional artificial transpiration for efficient solar waste-water treatment. Natl. Sci. Rev. 5, 70 (2018).Google Scholar
45.Hong, S.H., Shi, Y., Li, R.Y., Zhang, C.L., Jin, Y., and Wang, P.: Nature-inspired, 3D origami solar steam generator toward near full utilization of solar energy. ACS Appl. Mater. Interfaces 10, 28517 (2018).Google Scholar
46.Ren, H.Y., Tang, M., Guan, B.L., Wang, K.X., Yang, J.W., Wang, F.F., Wang, M.Z., Shan, J.Y., Chen, Z.L., Wei, D., Peng, H.L., and Liu, Z.F.: Hierarchical graphene foam for efficient omnidirectional solar-thermal energy conversion. Adv. Mater. 29, 1702590 (2017).Google Scholar
47.Wang, Z.Z., Ye, Q.X., Liang, X.B., Xu, J.L., Chang, C., Song, C.Y., Shang, W., Wu, J.B., Tao, P., and Deng, T.: Paper-based membranes on silicone floaters for efficient and fast solar-driven interfacial evaporation under one sun. J. Mater. Chem. A. 5, 16359 (2017).Google Scholar
48.Yi, L.C., Ci, S.Q., Luo, S.L., Shao, P., Hou, Y., and Wen, Z.H.: Scalable and low-cost synthesis of black amorphous Al-Ti-O nanostructure for high-efficient photothermal desalination. Nano Energy 41, 600 (2017).Google Scholar
49.Neumann, O., Neumann, A.D., Tian, S., Thibodeaux, C., Shubhankar, S., Muller, J., Silva, E., Alabastri, A., Bishnoi, S.W., Nordlander, P., and Halas, N.J.: Combining solar steam processing and solar distillation for fully off-grid production of cellulosic bioethanol. ACS Energy Lett. 2, 8 (2017).Google Scholar
50.Zhu, G.L., Xu, J.J., Zhao, W.L., and Huang, F.Q.: Constructing black titania with unique nanocage structure for solar desalination. ACS Appl. Mater. Interfaces 8, 31716 (2016).Google Scholar
51.Dongare, P.D., Alabastri, A., Pedersen, S., Zodrow, K.R., Hogan, N.J., Neumann, O., Wu, J.J., Wang, T.X., Deshmukh, A., Elimelech, M., Li, Q.L., Nordlander, P., and Halas, N.J.: Nanophotonics-enabled solar membrane distillation for off-grid water purification. Proc. Natl. Acad. Sci. USA 114, 6936 (2017).Google Scholar
52.Ma, S.N., Chiu, C.P., Zhu, Y.J., Tang, C.Y., Long, H., Qarony, W., Zhao, X.H., Zhang, X.M., Lo, W.H., and Tsang, Y.H.: Recycled waste black polyurethane sponges for solar vapor generation and distillation. Appl. Energy 206, 63 (2017).Google Scholar
53.Wang, X.Z., He, Y.R., Liu, X., Cheng, G., and Zhu, J.Q.: Solar steam generation through bio-inspired interface heating of broadband-absorbing plasmonic membranes. Appl. Energy 195, 414 (2017).Google Scholar
54.Wang, Y.C., Zhang, L.B., and Wang, P.: Self-floating carbon nanotube membrane on macroporous silica substrate for highly efficient solar-driven interfacial water evaporation. ACS Sustainable Chem. Eng. 4, 1223 (2016).Google Scholar
55.Liu, Y., Lou, J.W., Ni, M.T., Song, C.Y., Wu, J.B., Dasgupta, N.P., Tao, P., Shang, W., and Deng, T.: Bioinspired bifunctional membrane for efficient clean water generation. ACS Appl. Mater. Interfaces 8, 772 (2016).Google Scholar
56.Lou, J.W., Liu, Y., Wang, Z.Y., Zhao, D.W., Song, C.Y., Wu, J.B., Dasgupta, N., Zhang, W., Zhang, D., Tao, P., Shang, W., and Deng, T.: Bioinspired Multifunctional paper-based rGO composites for solar-driven clean water generation. ACS Appl. Mater. Interfaces 8, 14628 (2016).Google Scholar
57.Zhang, Y., Zhao, D.W., Yu, F., Yang, C., Lou, J.W., Liu, Y.M., Chen, Y.Y., Wang, Z.Y., Tao, P., Shang, W., Wu, J.B., Song, C.Y., and Deng, T.: Floating rGO-based black membranes for solar driven sterilization. Nanoscale 9, 19384 (2017).Google Scholar
58.Xue, G.B., Liu, K., Chen, Q., Yang, P.H., Li, J., Ding, T.P., Duan, J.J., Qi, B., and Zhou, J.: Robust and low-cost flame-treated wood for high-performance solar steam generation. ACS Appl. Mater. Interfaces 9, 15052 (2017).Google Scholar
59.Liu, K.K., Jiang, Q., Tadepallifit, S., Raliya, R., Biswas, P., Naik, R.R., and Singamaneni, S.: Wood graphene oxide composite for highly efficient solar steam generation and desalination. ACS Appl. Mater. Interfaces 9, 7675 (2017).Google Scholar
60.Zhu, M., Li, Y., Chen, F., Zhu, X., Dai, J., Li, Y., Yang, Z., Yan, X., Song, J., Wang, Y., Hitz, E., Luo, W., Lu, M., Yang, B., and Hu, L.: Plasmonic wood for high-efficiency solar steam generation. Adv. Energy Mater. 8, 1701028 (2017).Google Scholar
61.Chen, C.J., Li, Y.J., Song, J.W., Yang, Z., Kuang, Y., Hitz, E., Jia, C., Gong, A., Jiang, F., Zhu, J.Y., Yang, B., Xie, J., and Hu, L.B.: Highly flexible and efficient solar steam generation device. Adv. Mater. 29, 1701756 (2017).Google Scholar
62.Zhu, M.W., Li, Y.J., Chen, G., Jiang, F., Yang, Z., Luo, X.G., Wang, Y.B., Lacey, S.D., Dai, J.Q., Wang, C.W., Jia, C., Wan, J.Y., Yao, Y.G., Gong, A., Yang, B., Yu, Z.F., Das, S., and Hu, L.B.: Tree-inspired design for high-efficiency water extraction. Adv. Mater. 29, 1704107 (2017).Google Scholar
63.Liu, H., Chen, C.J., Chen, G., Kuang, Y.D., Zhao, X.P., Song, J.W., Jia, C., Xu, X., Hitz, E., Xie, H., Wang, S., Jiang, F., Li, T., Li, Y.J., Gong, A., Yang, R.G., Das, S., and Hu, L.B.: High-performance solar steam device with layered channels: artificial tree with a reversed design. Adv. Energy Mater. 8, 1701616 (2018).Google Scholar
64.Zhuang, S.D., Zhou, L., Xu, W.C., Xu, N., Hu, X.Z., Li, X.Q., Lv, G.X., Zheng, Q.H., Zhu, S.N., Wang, Z.L., and Zhu, J.: Tuning transpiration by interfacial solar absorber-leaf engineering. Adv. Sci. 5, 1700497 (2018).Google Scholar
65.Tian, L.M., Luan, J.Y., Liu, K.K., Jiang, Q.S., Tadepalli, S., Gupta, M.K., Naik, R.R., and Singamaneni, S.: Plasmonic biofoam: a versatile optically active material. Nano Lett. 16, 609 (2016).Google Scholar
66.Xu, N., Hu, X.Z., Xu, W.C., Li, X.Q., Zhou, L., Zhu, S.N., and Zhu, J.: Mushrooms as efficient solar steam-generation devices. Adv. Mater. 29, 1606762 (2017).Google Scholar
67.Zhang, W.T., Zhu, W.X., Shi, S., Hu, N., Suo, Y.R., and Wang, J.L.: Bioinspired foam with large 3D macropores for efficient solar steam generation. J. Mater. Chem. A 6, 16220 (2018).Google Scholar
68.Wang, Y.C., Wang, C.Z., Song, X.J., Huang, M.H., Megarajan, S.K., Shaukat, S.F., and Jiang, H.Q.: Improved light-harvesting and thermal management for efficient solar-driven water evaporation using 3D photothermal cones. J. Mater. Chem. A 6, 9874 (2018).Google Scholar
69.Liu, Y.M., Chen, J.W., Guo, D.W., Cao, M.Y., and Jiang, L.: Floatable, self-cleaning, and carbon-black-based superhydrophobic gauze for the solar evaporation enhancement at the air-water interface. ACS Appl. Mater. Interfaces 7, 13645 (2015).Google Scholar
70.Zhang, L.B., Tang, B., Wu, J.B., Li, R.Y., and Wang, P.: Hydrophobic light-to-heat conversion membranes with self-healing ability for interfacial solar heating. Adv. Mater. 27, 4889 (2015).Google Scholar