Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-14T12:28:59.588Z Has data issue: false hasContentIssue false

Oxygen-permeable membrane materials based on solid or liquid Bi2O3

Published online by Cambridge University Press:  18 October 2013

Valery V. Belousov*
Affiliation:
A.A. Baikov Institute of Metallurgy and Materials, Russian Academy of Sciences, 49 Leninskii Pr., 119991 Moscow, Russia
*
Address all correspondence to Valery V. Belousov atvbelousov@imet.ac.ru
Get access

Abstract

Most important advances of the last years in research and development of oxygen ion transport membrane (ITM) materials based on solid or liquid Bi2O3 are briefly given. Special attention is paid to the transport properties of novel NiO/δ-Bi2O3 and In2O3/δ-Bi2O3 ceramic and ZnO/Bi2O3 solid/liquid composites. These composites show promise for use as ITM with the oxygen permeation rate comparable with that of the state-of-the-art membrane materials. The in situ Bi2O3 melt crystallization and grain boundary wetting methods of formation of the gas-tight composites are considered.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Bose, A.C., Stiegel, G.J., Armstrong, P.A., Halper, B.J., and Foster, E.P.: Progress in ion transport membranes for gas separation application, In Inorganic Membranes for Energy and Environmental Application, Bose, A.C., ed. (Springer, New York, USA, 2009) p. 3, 26.CrossRefGoogle Scholar
2.Zhu, X. and Yang, W.: Composite membrane based on ionic conductor and mixed conductor for oxygen separation. AIChE J. 54, 665 (2008).CrossRefGoogle Scholar
3.Belousov, V.V. and Fedorov, S.V.: Accelerated mass transfer involving the liquid phase in solids. Russ. Chem. Rev. 81, 44 (2012).CrossRefGoogle Scholar
4.Fedorov, S.V., Belousov, V.V., and Vorobiev, A.V.: Transport properties of BiVO4 – V2O5 liquid-channel grain-boundary structures. J. Electrochem. Soc. 155, F241 (2008).Google Scholar
5.Belousov, V.V., Fedorov, S.V., and Vorobiev, A.V.: The oxygen permeation of solid/melt composite BiVO4 – 10 wt.% V2O5 membrane. J. Electrochem. Soc. 158, B601 (2011).Google Scholar
6.Isalski, W.H.: Separation of Gases (Clarendon Press, Oxford, 1989).Google Scholar
7.Yang, R.T.: Gas Separation by Adsorption Processes (Butterworth, Boston, 1987).Google Scholar
8.Hsieh, H.P.: New membrane materials and processes for separation. AIChE Symposium Series, No 261, v. 84, 1988 (edited by Sirkar, K.K. and Lloyd, D.R.).Google Scholar
9.Toshima, N. and Asanuma, H.: Porous Polymer Complexes for Gas Separation (chapter 5). Polymers for gas separation, Toshima, N., ed. (VCH, Weinheim, 1992).Google Scholar
10.Bouwmeester, H.J.M., Kruidhof, H., and Burggraaf, A.J.: Importance of the surface exchange kinetics as rate-limiting step in oxygen permeation through mixed-conducting oxides. Solid State Ion. 72, 185 (1994).CrossRefGoogle Scholar
11.Van Hassel, B.A.: Oxygen transfer across composite oxygen transport membranes. Solid State Ion. 174, 253 (2004).Google Scholar
12.Harwig, H.A. and Gerards, A.G.: Electrical properties of the α, β, γ, and δ phases of bismuth sesquioxide. J. Solid State Chem. 26, 265 (1978).CrossRefGoogle Scholar
13.Battle, P.D., Catlow, C.R.A., Drennan, J., and Murry, A.D.: The structure and properties of the oxygen conducting δ phase of Bi2O3. J. Phys. C 16, L561 (1983).Google Scholar
14.Battle, P.D., Catlow, C.R.A., Chadwick, A.V., Cox, P., Greaves, G.N., and Moroney, L.M.: Sesquioxides with the fluorite structure. J. Solid State Chem. 63, 8 (1986).Google Scholar
15.Blower, S.K. and Graves, C.: The structure of γ-Bi2O3 from powder neutron diffraction data. Acta Crystallogr. C44, 587 (1988).Google Scholar
16.Harwig, H.A.: On the structure of bismuth sesquioxide: α-, β-, γ-, and δ- phase. Z. Anorg. Allg. Chem. 444, 151 (1978).CrossRefGoogle Scholar
17.Harwig, H.A. and Weenk, J.W.: Phase relation in bismuth sesquioxide. Z. Anorg. Allg. Chem. 444, 167 (1978).Google Scholar
18.Harwig, H.A. and Gerards, A.G.: The polymorphism of bismuth sesquioxide. Thermochim. Acta 28, 121 (1979).Google Scholar
19.Jiang, N. and Wachsman, E.D.: Structural stability and conductivity of phase-stabilized cubic bismuth oxide. J. Am. Ceram. Soc. 82, 3057 (1999).Google Scholar
20.Takahashi, T., Iwahara, H., and Arao, T.: High oxide ion conduction in sintered oxide of the Bi2O3-Y2O3 system. J. Appl. Electrochem. 5, 187 (1975).Google Scholar
21.Takahashi, T., Esaka, T., and Iwahara, H.: High oxide ion conduction in sintered oxide of the Bi2O3-Gd2O3 system. J. Appl. Electrochem. 5, 197 (1975).Google Scholar
22.Verker, M.J. and Burggraaf, A.J.: High oxide ion conduction in sintered oxide of the Bi2O3-Dy2O3 system. J. Electrochem. Soc. 128, 75 (1981).Google Scholar
23.Wachsman, E.D., Ball, G.R., Jiang, N., and Stevenson, D.A.: Structural and defect studies in solid oxide electrolytes. Solid State Ion. 52, 213 (1992).Google Scholar
24.Fung, K. and Virkar, A.: Phase stability, phase transformation kinetics, and conductivity of Y2O3-Bi2O3 solid electrolyte containing aliovalent dopants. J. Am. Ceram. Soc. 74, 1970 (1991).Google Scholar
25.Takahashi, T. and Iwahara, H.: Oxide ion conductors based on bismuth sesquioxide. Mater. Res. Bull. 13, 1447 (1978).Google Scholar
26.Wachsman, E.D., Boyapati, S., Kaufman, M.J., and Jiang, N.: Modelling of ordered structures of phase-stabilized cubic bismuth oxide. J. Am. Ceram. Soc. 83, 1964 (2000).Google Scholar
27.Jiang, N., Buchanan, R.M., Henn, F.E.G., Stevenson, D.A., and Wachsman, E.D.: Aging phenomenon of stabilized bismuth oxide. Mater. Res. Bull. 29, 247 (1994).CrossRefGoogle Scholar
28.Belousov, V.V., Schelkunov, V.A., Fedorov, S.V., Kulbakin, I.V., and Vorobiev, A.V.: Oxygen-permeable In2O3-55 wt.% δ-Bi2O3 composite membrane. Electrochem. Commun. 20, 60 (2012).CrossRefGoogle Scholar
29.Belousov, V.V., Schelkunov, V.A., Fedorov, S.V., Kulbakin, I.V., and Vorobiev, A.V.: Oxygen-permeable NiO-54 wt.% δ-Bi2O3 composite membrane. Ionics 18, 787 (2012).CrossRefGoogle Scholar
30.Kul'bakin, I.V., Belousov, V.V., Fedorov, S.V., and Vorobiev, A.V.: Solid/melt ZnO–Bi2O3 composites as ion transport membranes for oxygen separation. Mater. Lett. 67, 139 (2012).CrossRefGoogle Scholar
31.Hong, J., Kirchen, P., and Ghoniem, A.F.: Numerical simulation of ion transport membrane reactors: oxygen permeation and transport and fuel conversion. J. Membr. Sci. 71–85, 407408, (2012) doi:10.1016/j.memsci.2012.03.018.Google Scholar
32.Hong, J., Kirchen, P., and Ghoniem, A.F.: Interactions between oxygen permeation and homogeneous-phase fuel conversion on the sweep side of an ion transport membrane. J. Membr. Sci. 428, 309 (2013).CrossRefGoogle Scholar
33.Shin, M.J. and Yu, J.H.: Oxygen transport of A-site deficient Sr1−xFe0.5Co0.5O3−δ (x = 0–0.3) membranes. J. Membr. Sci. 40, 401402 (2012).Google Scholar
34.Yaremchenko, A.A., Buysse, C., Middelkoop, V., Shijkers, F., Buekenhoudt, A., Frade, J.R., and Kovalevsky, A.V.: Impact of sulphur contamination on the oxygen transport mechanism through Ba0.5Sr0.5Co0.8Fe0.2O3−δ: relevant issues in the development of capillary and hollow fibre membrane geometry. J. Membr. Sci. 428, 123 (2013).Google Scholar
35.Kargin, Yu. F.: Phase equilibrium in Bi2O3-NiO system. Russ. J. Inorg. Chem. 39, 2079 (1994).Google Scholar
36.Kargin, Yu. F.: Phase equilibrium in Bi2O3-M2O3 (M – Sc, In and Tl) systems. Russ. J. Inorg. Chem. 45, 1553 (2000).Google Scholar
37.Guha, G.P., Kunej, S., and Suvorov, D.J.: Phase equilibrium relations in binary system Bi2O3-ZnO. J. Mater. Sci. 39, 911 (2004).CrossRefGoogle Scholar
38.German, R.M., Suri, P., and Park, S.J.: Review: liquid-phase sintering. J. Mater. Sci. 44, 1 (2009).CrossRefGoogle Scholar
39.Belousov, V.V.: Grain boundary wetting in ceramic cuprates. J. Mater. Sci. 40, 2361 (2005).Google Scholar
40.Belousov, V.V.: Surface ionics: a brief review. J. Eur. Ceram. Soc. 27, 3459 (2007).Google Scholar
41.Belousov, V.V.: Grain boundary wetting in ceramic materials. Colloid. J. 66, 121 (2004).Google Scholar
42.Belousov, V.V.: Wetting of grain boundaries in cuprate ceramics. Inorg. Mater. 39, 82 (2003).Google Scholar
43.Belousov, V.V.: Surface energy of bismuth cuprate. J. Supercond. 15, 207 (2002).Google Scholar
44.Clarke, D.R.: Varistor ceramics. J. Am. Ceram. Soc. 82, 485 (1999).Google Scholar
45.French, R.H.: Origins and applications of London dispersion forces and Hamaker constants in ceramics. J. Am. Ceram. Soc. 83, 2117 (2000).Google Scholar
46.Belousov, V.V. and Klimashin, A.A.: Catastrophic oxidation of copper: a brief review. Metall. Mater. Trans. A 43A, 3715 (2012).Google Scholar
47.Belousov, V.V.: Rapid nondiffusional penetration of oxide melts along grain boundaries of oxide ceramics. J. Am. Ceram. Soc. 82, 1342 (1999).Google Scholar
48.Belousov, V.V.: Catastrophic oxidation of metals. Russ. Chem. Rev. 67, 563 (1998).CrossRefGoogle Scholar
49.Belousov, V.V.: Electrochemical mechanism of hot corrosion of Bi2O3-deposited copper. Corros. Sci. 52, 68 (2010).CrossRefGoogle Scholar
50.Belousov, V.V.: Liquid-channel grain-boundary structures. J. Am. Ceram. Soc. 79, 1703 (1996).Google Scholar
51.Belousov, V.V.: Liquid-channel grain-boundary structures with ionic conduction. Russ. J. Electrochem. 31, 1240 (1995).Google Scholar
52.Xie, R.J., Mitomo, M., and Zhan, G.D.: Superplasticity in a fine-grained beta-silicon nitride ceramic containing a transient liquid. Acta Mater. 48, 2049 (2000).Google Scholar
53.Kofstad, P.: Electrical Conductivity, Nonstoichiometry and Diffusion in Binary Metal Oxides (Wiley, New York, 1972).Google Scholar
54.Bak, T., Nowotny, J., Rekas, M., Sorrell, C.C., Banda, P. A., and Wolodarski, W.: Electrical conductivity of indium sesquioxide thin film. J. Mater. Sci. 13, 571 (2002).Google Scholar
55.Feinleib, J. and Adler, D.: Band structure and electrical conductivity of NiO. Phys. Rev. Lett. 21, 1010 (1968).Google Scholar
56.Eror, N.G. and Wagner, J.B.: Electrical conductivity of single crystalline nickel oxide, Phys. Status Solidi 35, 641 (1969).CrossRefGoogle Scholar
57.Mac Do'nail, D.A. and Jacobs, P.W.M.: On the lattice parameters of some sesquioxides with the fluorite structure. J. Solid State Chem. 84, 183 (1990).Google Scholar
58.Sammes, N.M., Tompsett, G.A., Nafe, H., and Aldinger, F.: Bismuth based oxide electrolytes structure and ionic conductivity. J. Eur. Ceram. Soc. 19, 1801 (1999).Google Scholar
59.Shuk, P., Wiemhofer, H.D., and Gopel, W.: Oxide ion conducting electrolytes based on Bi2O3. Solid State Ion. 89, 179 (1996).Google Scholar
60.Laurent, K., Wang, G.Y., Tusseau-Nenez, S., and Leprince-Wang, Y.: Structure and conductivity studies of electrodeposited δ-Bi2O3. Solid State Ion. 178, 1735 (2008).CrossRefGoogle Scholar
61.Hull, S.: Superionic: crystal structures and conduction processes. Rep. Prog. Phys. 67, 1233 (2004).CrossRefGoogle Scholar
62.Yashima, M. and Ishimura, D.: Crystal structure and disorder of the fast oxide-ion conductor cubic Bi2O3. Chem. Phys. Lett. 378, 395 (2003).Google Scholar
63.Music, D., Konstantinidis, S., and Schneider, J.M.: Equilibrium structure of δ-Bi2O3 from first principles. J. Phys.: Condens. Mater. 21, 175403 (2009).Google Scholar
64.Gattow, G. and Schroder, H.: Structure of high-temperature δ-Bi2O3. Z. Anorg. Allg. Chem. 318, 176 (1962).Google Scholar
65.Willis, B.T.M.: The anomalous behavior of the neutron reflexion of fluorite. Acta Crystallogr. 18, 75 (1965).Google Scholar
66.Wagner, C.: Theory of tarnishing process. Z. Phys. Chem. 21B, 25 (1933).Google Scholar
67.Waseda, Y. and Toguri, J.M.: The Structure and Properties of Oxide Melts (World Scientific, Singapore, 1998).Google Scholar
68.Janotti, A. and Van de Walle, C.G.: Fundamentals of zinc oxide as a semiconductor, Rep. Prog. Phys. 72, 1 (2009).Google Scholar
69.Liu, L., Xu, J., Wang, D., Jiang, M., Wang, S., Li, B., Zhang, Z., Zhao, D., Shan, C.X., Yao, B., and Shen, D.Z.: p-Type conductivity in N-doped ZnO: the role of the NZn-VO complex. Phys. Rev. Lett. 108, 215501 (2012).Google Scholar
70.Wang, H., Feldhoff, A., and Caro, J.: A cobalt-free oxygen-permeable membrane based on the perovskite-type oxide Ba0.5Sr0.5Zn0.2Fe0.8O3−δ. Adv. Mater. 17, 1785 (2005).Google Scholar
71.Kovalevsky, A.V.: Processing and oxygen permeation studies of asymmetric multilayer Ba0.5Sr0.5Co0.8Fe0.2O3−δ membranes. J. Membr. Sci. 380, 68 (2011).Google Scholar
72.Ten Elshof, J.E., Bouwmeester, H.J.M., and Verweiy, H.: Oxidative coupling methane in a mixed-conducting perovskite membrane reactor. Appl. Catal. A 130, 195 (1995).Google Scholar
73.Yaremchenko, A.A., Kharton, V.V., Valente, A.A., Snijkers, F.M.M., Cooymans, A.L., and Marques, F.M.B.: Oxygen permeability, thermal expansion and stability of SrCo0.8Fe0.2O3−δ – SrAl2O4 composites. Solid State Ion. 178, 1205 (2007).Google Scholar
74.Kharton, V.V. and Yaremchenko, A.A.: Perovskite-type oxides for high-temperature oxygen separation. J. Membr. Sci. 163, 307 (1999).Google Scholar
75.Brinkman, H.W., Kruidhof, H., and Burggraaf, A.J.: Mixed conductivity yttrium-barium-cobalt-oxide for high oxygen permeation. Solid State Ion. 68, 173 (1994).Google Scholar
76.Stevenson, J.W., Armstrong, T.R., Carneim, R.D., Pederson, L.P., and Weber, W.J.: Electrochemical properties of mixed-conducting perovskites La1−xMxCo1−yFeyO3−δ (M – Sr, Ba and Ca). J. Electrochem. Soc. 143, 2722 (1996).Google Scholar
77.Pena, M.A. and Fierro, J.L.G.: Chemical structures and performance of perovskite oxides. Chem. Rev. 101, 1981 (2001).Google Scholar
78.Lee, S.: Mechanical properties and structure stability of perovskite type, oxygen-permeable, dense membranes. Desalination 193, 236 (2006).Google Scholar
79.Sunarso, J., Baumannb, S., Serrac, J.M., Meulenbergb, W.A., Liua, S., Lind, Y.S., and Diniz da Costaa, J.C.: Mixed ionic-electronic conducting (MIEC) ceramic-based membranes for oxygen separation. J. Membr. Sci. 320, 13 (2008).Google Scholar
80.Chadwick, A.V.: Nanotechnology: solid progress in ion conduction. Nature 408, 925 (2000).Google Scholar
81.Belousov, V.V.: High temperature solid/melt nanocomposites. JETP Lett. 88, 297 (2008).CrossRefGoogle Scholar