Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T21:55:27.111Z Has data issue: false hasContentIssue false

Oxygen vacancy enhanced room-temperature ferromagnetism in Sr3SnO/c-YSZ/Si (001) heterostructures

Published online by Cambridge University Press:  28 January 2014

Y.F. Lee*
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina27695-7907
F. Wu
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina27695-7907
J. Narayan
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina27695-7907
J. Schwartz
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina27695-7907
*
Address all correspondence to Yi-Fang Lee atylee9@ncsu.edu
Get access

Abstract

The magnetic properties of Sr3SnO (SSO) epitaxial thin films prepared under various post-growth annealing treatments are reported. The SSO films are grown on cubic yttria-stabilized zirconia Si (001) platform by pulsed laser deposition. Post-growth vacuum annealing is found to enhance the room-temperature ferromagnetism (RTFM), whereas oxygen annealing reduces it. The results are explained through the oxygen vacancy constituted bound magnetic polarons (BMP) model. An empirical relationship between the extracted BMP concentration and the oxygen vacancy concentration is shown using X-ray photoelectron spectroscopy data. The results indicate a promising way to tune RTFM by manipulating oxygen vacancies and related defects.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Bernevig, B.A. and Zhang, S-C.: Quantum spin Hall effect. Phys. Rev. Lett. 96, 106802 (2006).Google Scholar
2.Moore, J.E. and Balents, L.: Topological invariants of time-reversal-invariant band structures. Phys. Rev. B 75, 121306 (2007).CrossRefGoogle Scholar
3.Fu, L., Kane, C.L., and Mele, E.J.: Topological insulators in three dimensions. Phys. Rev. Lett. 98, 106803 (2007).Google Scholar
4.Zhang, J-M., Zhu, W., Zhang, Y., Xiao, D., and Yao, Y.: Tailoring magnetic doping in the topological insulator Bi2Se3. Phys. Rev. Lett. 109, 266405 (2012).Google Scholar
5.Li, J., Jiang, Y., Li, Y., Yang, D., Xu, Y., and Yan, M.: Origin of room temperature ferromagnetism in MgO films. Appl. Phys. Lett. 102, 072406- (2013).Google Scholar
6.Liu, Q., Liu, C-X., Xu, C., Qi, X-L., and Zhang, S-C.: Magnetic impurities on the surface of a topological insulator. Phys. Rev. Lett. 102, 156603 (2009).CrossRefGoogle ScholarPubMed
7.Liu, M., Zhang, J., Chang, C-Z., Zhang, Z., Feng, X., Li, K., He, K., Wang, L-l., Chen, X., Dai, X., Fang, Z., Xue, Q-K., Ma, X., and Wang, Y.: Crossover between weak antilocalization and weak localization in a magnetically doped topological insulator. Phys. Rev. Lett. 108, 036805 (2012).Google Scholar
8.Chen, Y.L., Chu, J-H., Analytis, J.G., Liu, Z.K., Igarashi, K., Kuo, H-H., Qi, X.L., Mo, S.K., Moore, R.G., Lu, D.H., Hashimoto, M., Sasagawa, T., Zhang, S.C., Fisher, I.R., Hussain, Z., and Shen, Z.X.: Massive Dirac Fermion on the surface of a magnetically doped topological insulator. Science 329, 659662 (2010).CrossRefGoogle ScholarPubMed
9.Qi, X-L., Li, R., Zang, J., and Zhang, S-C.: Inducing a magnetic monopole with topological surface states. Science 323, 11841187 (2009).Google Scholar
10.Pan, H., Yi, J.B., Shen, L., Wu, R.Q., Yang, J.H., Lin, J.Y., Feng, Y.P., Ding, J., Van, L.H., and Yin, J.H.: Room-temperature ferromagnetism in carbon-doped ZnO. Phys. Rev. Lett. 99, 127201 (2007).Google Scholar
11.Venkatesan, M., Fitzgerald, C.B., and Coey, J.M.D.: Unexpected magnetism in a dielectric oxide. Nature 430, 630630 (2004).Google Scholar
12.Zhou, S., Čižmár, E., Potzger, K., Krause, M., Talut, G., Helm, M., Fassbender, J., Zvyagin, S.A., Wosnitza, J., and Schmidt, H.: Origin of magnetic moments in defective TiO2 single crystals. Phys. Rev. B 79, 113201 (2009).CrossRefGoogle Scholar
13.Yoon, S.D., Chen, Y., Yang, A., Goodrich, T.L., Zuo, X., Arena, D.A., Ziemer, K., Vittoria, C., and Harris, V.G.: Oxygen-defect-induced magnetism to 880 K in semiconducting anatase TiO2−δ films. J. Phys.: Condens. Matter 18, L355 (2006).Google Scholar
14.Sudakar, C., Kharel, P., Suryanarayanan, R., Thakur, J.S., Naik, V.M., Naik, R., and Lawes, G.: Room temperature ferromagnetism in vacuum-annealed TiO2 thin films. J. Magn. Magn. Mater. 320, L31L36 (2008).Google Scholar
15.Ohno, H.: Making nonmagnetic semiconductors ferromagnetic. Science 281, 951956 (1998).CrossRefGoogle ScholarPubMed
16.Kim, D., Hong, J., Park, Y.R., and Kim, K.J.: The origin of oxygen vacancy induced ferromagnetism in undoped TiO2. J. Phys.: Condens. Matter 21, 195405 (2009).Google Scholar
17.Mal, S., Yang, T-H., Gupta, P., Prater, J.T., and Narayan, J.: Thin film epitaxy and magnetic properties of STO/TiN buffered ZnO on Si(001) substrates. Acta Mater. 59, 25262534 (2011).Google Scholar
18.Klintenberg, M.: The search for strong topological insulators. Preprint 2010 arXiv1007.4838K, 2010.Google Scholar
19.Widera, A. and Schäfer, H.: Übergangsformen zwischen zintlphasen und echten salzen: Die verbindungen A3BO (MIT A = Ca, Sr, Ba und B = Sn, Pb). Mater. Res. Bull. 15, 18051809 (1980).Google Scholar
20.Lee, Y.F., Wu, F., Kumar, R., Hunte, F., Schwartz, J., and Narayan, J.: Epitaxial integration of dilute magnetic semiconductor Sr3SnO with Si (001). Appl. Phys. Lett. 103, 112101 (2013).Google Scholar
21.Thompson, M.W.: Defects and Radiation Damage in Metals (London, Cambridge University Press, vol. Chap. 2, 1969), p. 11.Google Scholar
22.Banerjee, S., Mandal, M., Gayathri, N., and Sardar, M.: Enhancement of ferromagnetism upon thermal annealing in pure ZnO. Appl. Phys. Lett. 91, 182501 (2007).Google Scholar
23.Coey, J.M.D.: Dilute magnetic oxides. Curr. Opin. Solid State Mater. Sci. 10, 8392 (2006).Google Scholar
24.Jaffe, J.E., Droubay, T.C., and Chambers, S.A.: Oxygen vacancies and ferromagnetism in CoxTi1−xO2−x−y. J. Appl. Phys. 97, 073908 (2005).CrossRefGoogle Scholar
25.Coey, J.M.D., Wongsaprom, K., Alaria, J., and Venkatesan, M.: Charge-transfer ferromagnetism in oxide nanoparticles. J. Phys. D: Appl. Phys. 41, 134012 (2008).Google Scholar
26.Kohan, A.F., Ceder, G., Morgan, D., and Van de Walle, C.G.: First-principles study of native point defects in ZnO. Phys. Rev. B 61, 15019 (2000).CrossRefGoogle Scholar
27.Chiorescu, C., Cohn, J.L., and Neumeier, J.J.: Impurity conduction and magnetic polarons in antiferromagnetic oxides. Phys. Rev. B 76, 020404 (2007).CrossRefGoogle Scholar
28.Coey, J.M.D., Venkatesan, M., and Fitzgerald, C.B.: Donor impurity band exchange in dilute ferromagnetic oxides. Nat. Mater. 4, 173 (2005).Google Scholar
29.Wagner, W.R.C., Davis, L., and Moulder, J.: Handbook of X-ray Photoelectron Spectroscopy (PerkinElmer Corporation, Eden Prairie, Minnesota, 1979).Google Scholar
30.Chuang, T.J., Brundle, C.R., and Rice, D.W.: Interpretation of the x-ray photoemission spectra of cobalt oxides and cobalt oxide surfaces. Surface Sci. 59, 413 (1976).CrossRefGoogle Scholar
Supplementary material: PDF

Lee et al. supplementary material

Supplementary figures

Download Lee et al. supplementary material(PDF)
PDF 1.2 MB