Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T22:38:40.212Z Has data issue: false hasContentIssue false

Optical properties of high-quality nanohole arrays in gold made using soft-nanoimprint lithography

Published online by Cambridge University Press:  24 November 2015

M.A. Verschuuren
Affiliation:
Philips Research, High Tech Campus 4, 5656 AE, Eindhoven, The Netherlands
M.J.A. de Dood
Affiliation:
Huygens Laboratory, P.O. Box 9504, 2300 RA, Leiden, The Netherlands
D. Stolwijk
Affiliation:
Huygens Laboratory, P.O. Box 9504, 2300 RA, Leiden, The Netherlands
G.W. ‘t Hooft
Affiliation:
Philips Research, High Tech Campus 4, 5656 AE, Eindhoven, The Netherlands Huygens Laboratory, P.O. Box 9504, 2300 RA, Leiden, The Netherlands
A. Polman*
Affiliation:
Centre for Nanophotonics, FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
*
Address all correspondence to A. Polman atpolman@amolf.nl
Get access

Abstract

We present a novel soft-nanoimprint procedure to fabricate high-quality sub-wavelength hole arrays in optically thick films of gold on glass substrates. We fabricate 0.5 × 0.5 mm2 structures composed of a square array of 180 nm-diameter holes with a 780 nm pitch. Optical angular transmission measurements on the arrays show clear extraordinary transmission peaks corresponding to the dispersion of surface plasmon polaritons propagating on either side of the metal film. The transmission features can be strongly controlled by engineering the dielectric environment around the holes. As the nanoimprint procedure enables fabrication of nanoscale patterns over wafer-scale areas at low cost, these imprinted metal nanoparticle arrays can find applications in, e.g., optical components, photovoltaics, integrated optics, and microfluidics.

Type
Plasmonics, Photonics, and Metamaterials Research Letters
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ebbesen, T.W., Lezec, H.J., Ghaemi, H.F., Thio, T., and Wolff, P.A.: Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391, 667 (1998).CrossRefGoogle Scholar
2. Ghaemi, H.F., Thio, T., Grupp, D.E., Ebbesen, T.W., and Lezec, H.J.: Surface plasmons enhance optical transmission through subwavelength holes. Phys. Rev. B 58, 6779 (1998).CrossRefGoogle Scholar
3. Genet, C. and Ebbesen, T.W.: Light in tiny holes. Nature 455, 39 (2007).CrossRefGoogle Scholar
4. Martín-Moreno, L., García-Vidal, F.J., Lezec, H.J., Pellerin, K.M., Thio, T., Pendry, J.B., and Ebbesen, T.W.: Theory of extraordinary optical transmission through subwavelength hole arrays. Phys. Rev. Lett. 86, 1114 (2001).CrossRefGoogle ScholarPubMed
5. Skinner, J.L., Talin, A.A., and Horsley, D.A.: A MEMS light modulator based on diffractive nanohole gratings. Opt. Express 16, 3701 (2008).CrossRefGoogle ScholarPubMed
6. McMahon, J.M., Henzie, J., Odom, T.W., Schatz, G.C., and Gray, S.K.: Tailoring the sensing capabilities of nanohole arrays in gold films with Rayleigh anomaly-surface plasmon polaritons Opt. Express 15, 18119 (2007).CrossRefGoogle ScholarPubMed
7. Atwater, H.A. and Polman, A.: Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 21 (2010).Google ScholarPubMed
8. Ferry, V.E., Verschuuren, M.A., Li, H.B.T., Verhagen, E., Walters, R.J., Schropp, R.E.I., Atwater, H.A., and Polman, A.: Light trapping in ultrathin plasmonic solar cells. Opt. Express 18, A237 (2010).CrossRefGoogle ScholarPubMed
9. Gates, B.D., Xu, Q., Stewart, M., Ryan, D. , Willson, C.G., Whitesides, G.M.: New approaches to nanofabrication: molding, printing, and other techniques. Chem. Rev. 105, 1171 (2005).CrossRefGoogle ScholarPubMed
10. Boltasseva, A.: Plasmonic components fabrication via nanoimprint. J. Opt. A: Pure Appl. Opt. 11, 114001 (2009).CrossRefGoogle Scholar
11. Kwak, E.-S., Henzie, J., Chang, S.-H., Gray, S.K., Schatz, G.C., and Odom, T.W.: Surface plasmon standing waves in large-area subwavelength hole arrays. Nano Lett. 5, 1963 (2005).CrossRefGoogle ScholarPubMed
12. Malyarchuk, V., Hua, F., Mack, N.H., Velasquez, V.T., White, J.O., Nuzzo, R.G., and Rogers, J.A.: High performance plasmonic crystal sensor formed by soft nanoimprint lithography. Opt. Express 13, 5669 (2005).CrossRefGoogle ScholarPubMed
13. Henzie, J., Lee, M.H., and Odom, T.W.: Multiscale patterning of plasmonic metamaterials. Nat. Nanotechnol. 2, 549 (2007).CrossRefGoogle ScholarPubMed
14. Truong, T.T., Maria, J., Yao, J., Stewart, M.E., Lee, T.-W., Gray, S.K., Nuzzo, R.G., and Rogers, J.A.: Nanopost plasmonic crystals. Nanotechnology 20, 434011 (2009).CrossRefGoogle ScholarPubMed
15. Chena, J., Shia, J., Decaninia, D., Cambrila, E., Chenc, Y., and Haghiri-Gosneta, A.-M.: Gold nanohole arrays for biochemical sensing fabricated by soft UV nanoimprint lithography. Microelectr. Eng. 86, 632 (2009).CrossRefGoogle Scholar
16. Lee, S.H., Bantz, K.C., Lindquist, N.C., Oh, S.-H., and Haynes, C.L.: Self-assembled plasmonic nanohole arrays. Langmuir 25, 13685 (2009).CrossRefGoogle ScholarPubMed
17. Yao, J., Le, A.-P., Gray, S.K., Moore, J.S., Rogers, J.A., and Nuzzo, R.G.: Functional nanostructured plasmonic materials. Adv. Mater. 22, 1102 (2010).CrossRefGoogle ScholarPubMed
18. Odom, T.W., Love, J.C., Wolfe, D.B., Paul, K.E., and Whitesides, G.M.: Functional nanostructured plasmonic materials. Langmuir 18, 5314 (2002).CrossRefGoogle Scholar
19. Verschuuren, M., and van Sprang, H.: 3D Photonic structures by sol-gel imprint lithography. Materials Research Society Symp. Spring Meeting Proc. 1002, N03 (2007).Google Scholar
20. Verschuuren, M.A., Megens, M., and Polman, A.: unpublishedGoogle Scholar
21. Jung, G.-Y., Li, Z., Wu, W., Chen, Y., Olynick, D.L., Wang, S.-Y., Tong, W.M., and Williams, R.S.: Vapor-phase self-assembled monolayer for improved mold release in nanoimprint lithography. Langmuir 21, 1158 (2005).CrossRefGoogle ScholarPubMed
22. Schmid, H., and Michel, B.: Siloxane polymers for high-resolution, high-accuracy soft lithography. Macromolecules 33, 3042 (2000).CrossRefGoogle Scholar
23. Odom, T.W., Love, J.C., Paul, K.E., Wolfe, D.B., and Whitesides, G.M.: Improved pattern transfer in soft lithography using composite stamps. Langmuir 18, 5314 (2002).CrossRefGoogle Scholar
24. Burdinski, D., and Blees, M.H.: Thiosulfate- and thiosulfonate-based etchants for the patterning of gold using microcontact printing. Chem. Mater. 19, 3933 (2007).CrossRefGoogle Scholar
25. de Dood, M.J.A., Driessen, E.F.C., Stolwijk, D., and van Exter, M.P.: Observation of coupling between surface plasmons in index-matched hole arrays. Phys. Rev. B 77, 115437 (2008).CrossRefGoogle Scholar
26. van der Molen, K.L., Klein Koerkamp, K.J., Enoch, S., Segerink, F.B., van Hulst, N.F., and Kuipers, L.: Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory. Phys. Rev. B 72, 045421 (2005).CrossRefGoogle Scholar
27. Stolwijk, D., Driessen, E.F.C., Verschuuren, M.A., ‘t Hooft, G.W., van Exter, M.P., and de Dood, M.J.A.: Enhanced coupling of plasmons in hole arrays with periodic dielectric antennas. Opt. Lett. 33, 363 (2008).CrossRefGoogle ScholarPubMed
28. de Dood, M.J.A., Driessen, E.F.C., Stolwijk, D., Exter, M.P. van, Verschuuren, M.A., and ’t Hooft, G.W.: Solid-state index matching of surface plasmons. Proc. SPIE 6987, 6987113 (2008).Google Scholar
29. Klein Koerkamp, K.J., Enoch, S., Segerink, F.B., van Hulst, N.F., and Kuipers, L.: Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes. Phys. Rev. Lett. 92, 183901 (2004).CrossRefGoogle Scholar
30. Kroekenstoel, E.J.A., Verhagen, E., Walters, R.J., Kuipers, L., and Polman, A.: Enhanced spontaneous emission rate in annular plasmonic nanocavities. Appl. Phys. Lett. 95, 263106 (2009).CrossRefGoogle Scholar