Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-13T14:34:23.832Z Has data issue: false hasContentIssue false

On-the-fly segmentation approaches for x-ray diffraction datasets for metallic glasses

Published online by Cambridge University Press:  30 August 2017

Fang Ren*
Affiliation:
Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
Travis Williams
Affiliation:
College of Engineering and Computing, University of South Carolina, Columbia, SC 29208, USA
Jason Hattrick-Simpers
Affiliation:
Materials for Energy and Sustainable Development Group, National Institute of Standards and Technology, MD 20899, USA
Apurva Mehta*
Affiliation:
Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
*
Address all correspondence to Apurva Mehta, Fang Ren at mehta@slac.stanford.edu, fangren@slac.stanford.edu.
Address all correspondence to Apurva Mehta, Fang Ren at mehta@slac.stanford.edu, fangren@slac.stanford.edu.
Get access

Abstract

Investment in brighter sources and larger detectors has resulted in an explosive rise in the data collected at synchrotron facilities. Currently, human experts extract scientific information from these data, but they cannot keep pace with the rate of data collection. Here, we present three on-the-fly approaches—attribute extraction, nearest-neighbor distance, and cluster analysis—to quickly segment x-ray diffraction (XRD) data into groups with similar XRD profiles. An expert can then analyze representative spectra from each group in detail with much reduced time, but without loss of scientific insights. On-the-fly segmentation would, therefore, result in accelerated scientific productivity.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

These authors contributed equally to this work.

References

1.Blundell, T.L. and Patel, S.: High-throughput X-ray crystallography for drug discovery. Curr. Opin. Pharmacol. 4, 490496 (2004).Google Scholar
2.Tanaka, M., Katsuya, Y., and Yamamoto, A.: A new large radius imaging plate camera for high-resolution and high-throughput synchrotron x-ray powder diffraction by multiexposure method. Rev. Sci. Instrum. 79, 075106 (2008).Google Scholar
3.Gregoire, J.M., Dale, D., Kazimirov, A., DiSalvo, F.J., and van Dover, R.B.: High energy x-ray diffraction/x-ray fluorescence spectroscopy for high-throughput analysis of composition spread thin films. Rev. Sci. Instrum. 80, 123905 (2009).Google Scholar
4.Gregoire, J.M., Van Campen, D.G., Miller, C.E., Jones, R.J.R., Suram, S.K., and Mehta, A.: High-throughput synchrotron X-ray diffraction for combinatorial phase mapping. J. Synchrotron Radiat. 21, 12621268 (2014).Google Scholar
5.Suram, S.K., Newhous, P.F., Zhou, L., Van Campen, D.G., Mehta, A., and Gregoire, J.M.: High throughput light absorber discovery. Part 2. Establishing structure-band gap energy relationships. ACS Comb. Sci. 18, 682688 (2016).Google Scholar
6.Deng, Y.P., Guan, Y., Fowkes, J.D., Wen, S.Q., Liu, F.X., Phaff, G.M., Liaw, P.K., Liu, C.T., and Rack, P.D.: A combinatorial thin film sputtering approach for synthesizing and characterizing ternary ZrCuAl metallic glasses. Intermetallics 15, 12081216 (2007).Google Scholar
7.Green, M.L., Takeuchi, I., and Hattrick-Simpers, J.R.: Applications of high throughput (combinatorial) methodologies to electronic, magnetic, optical, and energy-related materials. J. Appl. Phys. 113, 231101 (2013).Google Scholar
8.Ding, S.Y., Liu, Y.H., Li, Y.L., Liu, Z., Sohn, S., Walker, F.J., and Schroers, J.: Combinatorial development of bulk metallic glasses. Nat. Mater. 13, 494500 (2014).Google Scholar
9.Demetriou, M.D., Launey, M.E., Garrett, G., Schramm, J.P., Hofmann, D.C., Johnson, W.L., and Ritchie, R.O.: A damage-tolerant glass. Nat. Mater. 10, 123128 (2011).Google Scholar
10.Liu, Y.H., Wang, G., Wang, R.J., Zhao, D.Q., Pan, M.X., and Wang, W.H.: Super plastic bulk metallic glasses at room temperature. Science 315, 13851388 (2007).Google Scholar
11.Chu, J.P., Jang, J.S.C., Huang, J.C., Chou, H.S., Yang, Y., Ye, J.C., Wang, Y.C., Lee, J.W., Liu, F.X., Liaw, P.K., Chen, Y.C., Lee, C.M., Li, C.L., and Rullyani, C.: Thin film metallic glasses: unique properties and potential applications. Thin Solid Films 520, 50975122 (2012).Google Scholar
12.Miracle, D.B. and Senkov, O.N.: A critical review of high entropy alloys and related concepts. Acta Mater. 122, 448511 (2017).Google Scholar
13.Miracle, D.B.: Critical assessment 14: High entropy alloys and their development as structural materials. Mater. Sci. Technol. 31, 11421147 (2015).Google Scholar
14.Wang, W.H., Dong, C., and Shek, C.H.: Bulk metallic glasses. Mater. Sci. Eng. R 44, 4589 (2004).Google Scholar
15.Tsai, M.H. and Yeh, J.W.: High-entropy alloys: a critical review. Mater. Res. Lett. 2, 107123 (2014).Google Scholar
16.Yang, X. and Zhang, Y.: Prediction of high-entropy stabilized solid-solution in multi-component alloys. Mater. Chem. Phys. 132, 233238 (2012).Google Scholar
17.Perim, E., Lee, D., Liu, Y.H., Toher, C., Gong, P., Li, Y.L., Simmons, W.N., Levy, O., Vlassak, J.J., Schroers, J., and Curtarolo, S.: Spectral descriptors for bulk metallic glasses based on the thermodynamics of competing crystalline phases. Nat. Commun. 7, 12315 (2016).Google Scholar
18.Laws, K.J., Miracle, D.B., and Ferry, M.: A predictive structural model for bulk metallic glasses. Nat. Commun. 6, 8123 (2015).Google Scholar
19.Zhang, K., Dice, B., Liu, Y.H., Schroers, J., Shattuck, M.D., and O'Hern, C.S.: On the origin of multi-component bulk metallic glasses: atomic size mismatches and de-mixing. J. Chem. Phys. 143, 054501 (2015).Google Scholar
20.Ren, F., Pandolfi, R., Van Campen, D., Hexemer, A., and Mehta, A.: On-the-fly data assessment for high throughput X-ray diffraction measurement. ACS Comb. Sci. 19, 377385 (2017).Google Scholar
21.Linford, M.R.: The Gaussian-Lorentzian sum, product, and convolution (Voigt) functions used in peak fitting XPS narrow scans, and an introduction to the impulse function. Vacuum Technology & Coating (July 2014), pp. 29.Google Scholar
22.Patterson, A.L.: The Scherrer formula for x-ray particle size determination. Phys. Rev. 56, 978982 (1939).Google Scholar
23.Iwasaki, Y., Kusne, A.G., and Takeuchi, I.: Comparison of dissimilarity measures for cluster analysis of X-ray diffraction data from combinatorial libraries. NPJ Comput. Mater. 3, 4 (2017).Google Scholar
24.Kusne, A.G., Gao, T.R., Mehta, A., Ke, L.Q., Nguyen, M.C., Ho, K.M., Antropov, V., Wang, C.Z., Kramer, M.J., Long, C., and Takeuchi, I.: On-the-fly machine-learning for high-throughput experiments: search for rare-earth-free permanent magnets. Sci. Rep. 4, 6367 (2014).Google Scholar
25.Kusne, A.G., Keller, D., Anderson, A., Zaban, A., and Takeuchi, I.: High-throughput determination of structural phase diagram and constituent phases using GRENDEL. Nanotechnology 26, 444002 (2015).Google Scholar
26.Stein, H.S., Jiao, S., and Ludwig, A.: Expediting combinatorial data set analysis by combining human and algorithmic analysis. ACS Comb. Sci. 19, 18 (2017).Google Scholar
27.Suram, S.K., Xue, Y.X., Bai, J.W., Le Bras, R., Rappazzo, B., Bernstein, R., Bjorck, J., Zhou, L., van Dover, R.B., Gomes, C.P., and Gregoire, J.M.: Automated phase mapping with AgileFD and its application to light absorber discovery in the V–Mn–Nb oxide system. ACS Comb. Sci. 19, 3746 (2017).Google Scholar
28.Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 28252830 (2011).Google Scholar
29.Hunter, D., Osborn, W., Wang, K., Kazantseva, N., Hattrick-Simpers, J., Suchoski, R., Takahashi, R., Young, M.L., Mehta, A., Bendersky, L.A., Lofland, S.E., Wuttig, M., and Takeuchi, I.: Giant magnetostriction in annealed Co1-xFex thin-films. Nat. Commun. 2, 518 (2011).Google Scholar
30.Jain, A., Ong, S.P., Hautier, G., Chen, W., Richards, W.D., Dacek, S., Cholia, S., Gunter, D., Skinner, D., Ceder, G., and Persson, K.A.: Commentary: the materials project: a materials genome approach to accelerating materials innovation. Apl. Mater. 1, 011002 (2013).Google Scholar
Supplementary material: File

Ren et al supplementary material

Ren et al supplementary material 1

Download Ren et al supplementary material(File)
File 270 KB