Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-14T10:15:28.987Z Has data issue: false hasContentIssue false

On the identification of Sb2Se3 using Raman scattering

Published online by Cambridge University Press:  11 May 2018

A. Shongalova
Affiliation:
Departamento de Física and I3N, Universidade de Aveiro, 3810-193 Aveiro, Portugal Satpayev University, Satpayev street, 22a, 050013 Almaty City, Kazakhstan
M.R. Correia
Affiliation:
Departamento de Física and I3N, Universidade de Aveiro, 3810-193 Aveiro, Portugal
B. Vermang
Affiliation:
University of Hasselt – Partner in Solliance, Agoralaan gebouw H, Diepenbeek 3590, Belgium Imec – Partner in Solliance, Kapeldreef 75, Leuven 3001, Belgium Imomec – Partner in Solliance, Wetenschapspark 1, Diepenbeek 3590, Belgium
J.M.V. Cunha
Affiliation:
International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal
P.M.P. Salomé
Affiliation:
International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal Departamento de Física, Universidade de Aveiro, 3810-193 Aveiro, Portugal
P.A. Fernandes*
Affiliation:
Departamento de Física and I3N, Universidade de Aveiro, 3810-193 Aveiro, Portugal International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal Departamento de Física, CIETI, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072 Porto, Portugal
*
Address all correspondence to P.A. Fernandes at paulo.fernandes@inl.int
Get access

Abstract

Robust evidences are presented showing that the Raman mode around 250 cm−1 in the Sb2Se3 thin films does not belong to this binary compound. The laser power density dependence of the Raman spectrum revealed the formation of Sb2O3 for high values of laser intensity power density excitation under normal atmospheric conditions. To complement this study, the Sb2Se3 films were characterized by x-ray diffraction during in situ annealing. Both these measurements showed that the Sb2Se3 compound can be replaced by Sb2O3. A heat-assisted chemical process explains these findings. Furthermore, Raman conditions required to perform precise measurements are described.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Kim, H.C., Oh, T.S., and Hyun, D-B.: Thermoelectric properties of the p-type Bi2Te3–Sb2Te3–Sb2Se3 alloys fabricated by mechanical alloying and hot pressing. J. Phys. Chem. Solids 61, 743749 (2000).Google Scholar
2.Xue, M.-Z. and Fu, Z-W.: Pulsed laser deposited Sb2Se3 anode for lithium-ion batteries. J. Alloys Compd. 458, 351356 (2008).Google Scholar
3.Ma, J., Wang, Y., Wang, Y., Chen, Q., Lian, J., and Zheng, W.: Controlled synthesis of one-dimensional Sb2Se3 nanostructures and their electrochemical properties. J. Phys. Chem. C 113, 1358813592 (2009).Google Scholar
4.Luo, W., Calas, A., Tang, C., Li, F., Zhou, L., and Mai, L.: Ultralong Sb2Se3 nanowire-based free-standing membrane anode for lithium/sodium ion batteries. ACS Appl. Mater. Interfaces 8, 3521935226 (2016).Google Scholar
5.Wang, L., Li, D-B., Li, K., Chen, C., Deng, H-X., Gao, L., Zhao, Y., Jiang, F., Li, L., Huang, F., He, Y., Song, H., Niu, G., and Tang, J.: Stable 6%-efficient Sb2Se3 solar cells with a ZnO buffer layer. Nat. Energy 2, 17046 (2017).Google Scholar
6.Zhou, Y., Wang, L., Chen, S., Qin, S., Liu, X., Chen, J., Xue, D-J., Luo, M., Cao, Y., Cheng, Y., Sargent, E.H., and Tang, J.: Thin-film Sb2Se3 photovoltaics with oriented one-dimensional ribbons and benign grain boundaries. Nat. Photonics 9, 409415 (2015).Google Scholar
7.Chen, C., Zhao, Y., Lu, S., Li, K., Li, Y., Yang, B., Chen, W., Wang, L., Li, D., Deng, H., Yi, F., and Tang, J.: Accelerated optimization of TiO2/Sb2Se3 thin film solar cells by high-throughput combinatorial approach. Adv. Energy. Mater. 7, 1700866 (2017).Google Scholar
8.Chen, C., Wang, L., Gao, L., Nam, D., Li, D., Li, K., Zhao, Y., Ge, C., Cheong, H., Liu, H., Song, H., and Tang, J.: 6.5% Certified efficiency Sb2Se3 solar cells using PbS colloidal quantum dot film as hole-transporting layer. ACS Energy Lett. 2, 21252132 (2017).Google Scholar
9.Wen, X., He, Y., Chen, C., Liu, X., Wang, L., Yang, B., Leng, M., Song, H., Zeng, K., Li, D., Li, K., Gao, L., and Tang, J.: Magnetron sputtered ZnO buffer layer for Sb2Se3 thin film solar cells. Sol. Energy Mater. Sol. Cells 172, 7481 (2017).Google Scholar
10.Torane, A.P. and Bhosale, C.H.: Preparation and characterization of electrodeposited Sb2Se3 thin films from non-aqueous media. J. Phys. Chem. Solids 63, 18491855 (2002).Google Scholar
11.Liu, X., Chen, J., Luo, M., Leng, M., Xia, Z., Zhou, Y., Qin, S., Xue, D-J., Lv, L., Huang, H., Niu, D., and Tang, J.: Thermal evaporation and characterization of Sb2Se3 thin film for substrate Sb2Se3/CdS solar cells. ACS Appl. Mater. Interfaces 6, 1068710695 (2014).Google Scholar
12.Dimitrievska, M., Gurieva, G., Xie, H., Carrete, A., Cabot, A., Saucedo, E., Pérez-Rodríguez, A., Schorr, S., and Izquierdo-Roca, V.: Raman scattering quantitative analysis of the anion chemical composition in kesterite Cu2ZnSn(SxSe1−x)4 solid solutions. J. Alloys Compd. 628, 464470 (2015).Google Scholar
13.Insignares-Cuello, C., Oliva, F., Neuschitzer, M., Fontané, X., Broussillou, C., Goislard de Monsabert, T., Saucedo, E., Ruiz, C.M., Pérez-Rodríguez, A., and Izquierdo-Roca, V.: Advanced characterization of electrodeposition-based high efficiency solar cells: non-destructive Raman scattering quantitative assessment of the anion chemical composition in Cu(In,Ga)(S,Se)2 absorbers. Sol. Energy Mater. Sol. Cells 143, 212217 (2015).Google Scholar
14.Salomé, P., Fernandes, P., Leitão, J., Sousa, M., Teixeira, J.P., and da Cunha, A.F.: Secondary crystalline phases identification in Cu2ZnSnSe4 thin films: contributions from Raman scattering and photoluminescence. J. Mater. Sci. 49, 74257436 (2014).Google Scholar
15.Zhang, Y., Li, G., Zhang, B., and Zhang, L.: Synthesis and characterization of hollow Sb2Se3 nanospheres. Mater. Lett. 58, 22792282 (2004).Google Scholar
16.Zhou, Y., Leng, M., Xia, Z., Zhong, J., Song, H., Liu, X., Yang, B., Zhang, J., Chen, J., Zhou, K., Han, J., Cheng, Y., and Tang, J.: Solution-processed antimony selenide heterojunction solar cells. Adv. Energy. Mater. 4, 1301846 (2014).Google Scholar
17.Nagata, K., Ishibashi, K., and Miyamoto, Y.: Raman and infrared spectra of rhombohedral selenium. Jpn. J. Appl. Phys. 20, 463469 (1981).Google Scholar
18.Mestl, G., Ruiz, P., Delmon, B., and Knozinger, H.: Sb2O3/Sb2O4 in reducing/oxidizing environments: an in situ Raman spectroscopy study. J. Phys. Chem. 98, 1127611282 (1994).Google Scholar
19.Ivanova, Z.G., Cernoskova, E., Vassilev, V.S., and Boycheva, S.V.: Thermomechanical and structural characterization of GeSe2–Sb2Se3–ZnSe glasses. Mater. Lett. 57, 10251028 (2003).Google Scholar
20.Minaev, V.S., Timoshenkov, S.P., and Kalugin, V.V.: Structural and phase transformations in condensed selenium. J. Optoelectron. Adv. Mater. 7, 17171741 (2005).Google Scholar
21.Wang, X., Kunc, K., Loa, I., Schwarz, U., and Syassen, K.: Effect of pressure on the Raman modes of antimony. Phys. Rev. B 74, 134305 (2006).Google Scholar
22.Zhao, Y., Chua, K.T.E., Gan, C.K., Zhang, J., Peng, B., Peng, Z., and Xiong, Q.: Phonons in Bi2S3 nanostructures: Raman scattering and first-principles studies. Phys. Rev. B 84, 205330 (2011).Google Scholar
23.Platzer-Björkman, C., Zabierowski, P., Pettersson, J., Törndahl, T., and Edoff, M.: Improved fill factor and open circuit voltage by crystalline selenium at the Cu(In,Ga)Se2 /buffer layer interface in thin film solar cells. Prog. Photovoltaics Res. Appl. 18, 249256 (2010).Google Scholar
24.SeJin, A., Ki Hyun, K., Jae Ho, Y., and Kyung Hoon, Y.: Effects of selenization conditions on densification of Cu(In,Ga)Se2 (CIGS) thin films prepared by spray deposition of CIGS nanoparticles. J. Appl. Phys. 105, 113533 (2009).Google Scholar
25.Li, Z., Chen, X., Zhu, H., Chen, J., Guo, Y., Zhang, C., Zhang, W., Niu, X., and Mai, Y.: Sb2Se3 thin film solar cells in substrate configuration and the back contact selenization. Sol. Energy Mater. Sol. Cells 161, 190196 (2017).Google Scholar
26.Weber, W.H., and Merlin, R.: Raman Scattering in Materials Science (Springer, 42, Berlin Heidelberg, 2000).Google Scholar
27.Bäuerle, D.: Laser Processing and Chemistry (Springer, Berlin Heidelberg, 2011). doi: 10.1007/978-3-642-17613-5.Google Scholar
28.Sereni, P., Musso, M., Knoll, P., Blaha, P., Schwarz, K., and Schmidt, G.: Polarization-dependent raman characterization of stibnite (Sb2S3). AIP Conf. Proc. 1267, 11311132 (2010).Google Scholar
29.Caracas, R. and Gonze, X.: First-principles study of the electronic properties of A2B3 minerals, with A = Bi,Sb and B = S,Se. Phys. Chem. Miner. 32, 295300 (2005).Google Scholar
30.Wang, J., Deng, Z., and Li, Y.: Synthesis and characterization of Sb2Se3 nanorods. Mater. Res. Bull. 37, 495502 (2002).Google Scholar
31.Efthimiopoulos, I., Zhang, J., Kucway, M., Park, C., Ewing, R.C., and Wang, Y.: Sb2Se3 under pressure. Sci. Rep. 3, 2665 (2013).Google Scholar
32.International Centre for Diffraction Data—Reference Code, 01-072-1184 (Orthorhombic Pbnm Sb2Se3), 01-072-1334 (cubic Fd-3m Sb2O3), 00-005-0562 (Rhombohedral R-3m Se6).Google Scholar