Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-13T20:04:36.107Z Has data issue: false hasContentIssue false

N-Phenyl naphthalene diimide pendant polymer as a charge storage material with high rate capability and cyclability

Published online by Cambridge University Press:  20 November 2017

Subashani Maniam*
Affiliation:
School of Chemistry, Monash University, Wellington Rd., Clayton 3800, Victoria, Australia
Kouki Oka
Affiliation:
Department of Applied Chemistry, Waseda University, Tokyo 169-8555, Japan
Hiroyuki Nishide*
Affiliation:
Department of Applied Chemistry, Waseda University, Tokyo 169-8555, Japan
*
Address all correspondence to Subashani Maniam, Hiroyuki Nishide at subashani.maniam@monash.edu, nishide@waseda.jp
Address all correspondence to Subashani Maniam, Hiroyuki Nishide at subashani.maniam@monash.edu, nishide@waseda.jp
Get access

Abstract

Pendent-type polymers are attractive materials which allow the flexibility to introduce various redox active moieties that facilitate rapid ion/electron transport and enable charge storage. Here, we demonstrate naphthalene diimide polymers with polynorbornene backbone having N-phenyl, PNAn 5 and N-(4-nitrophenyl), PNNO 6. Small changes in the molecular design have led to a significant difference in bulk material and device properties. PNNO 6 maintained 80% of its capacity at 1C after 10 cycles in a Li-ion coin cell. PNAn 5 displayed exceptionally high charge capacity and rate capability with excellent cyclability, maintaining almost its theoretical capacity at various C-rates throughout 500 cycles.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Schon, T.B., McAllister, B.T., Li, P.-F., and Seferos, D.S.: The rise of organic electrode materials for energy storage. Chem. Soc. Rev. 45, 6345 (2016).CrossRefGoogle ScholarPubMed
2. Poizot, P. and Dolhem, F.: Clean energy new deal for a sustainable world: from non-CO2 generating energy sources to greener electrochemical storage devices. Energy Environ. Sci. 4, 2003 (2011).Google Scholar
3. Liang, Y., Tao, Z., and Chen, J.: Organic electrode materials for rechargeable lithium batteries. Adv. Energy Mater. 2, 742 (2012).CrossRefGoogle Scholar
4. Nishide, H. and Oyaizu, K.: Toward flexible batteries. Science 319, 737 (2008).Google Scholar
5. Chen, H., Armand, M., Demailly, G., Dolhem, F., Poizot, P., and Tarascon, J.-M.: From biomass to a renewable Li x C6O6 organic electrode for sustainable Li-ion batteries. ChemSusChem 1, 348 (2008).Google Scholar
6. Song, Z., Zhan, H., and Zhou, Y.: Polyimides: promising energy-storage materials. Angew. Chem. Int. Ed. Engl. 49, 8444 (2010).Google Scholar
7. Sasada, Y., Langford, S.J., Oyaizu, K., and Nishide, H.: Poly(norbornyl-NDIs) as a potential cathode-active material in rechargeable charge storage devices. RSC Adv. 6, 42911 (2016).Google Scholar
8. Choi, W., Harada, D., Oyaizu, K., and Nishide, H.: Aqueous electrochemistry of poly(vinylanthraquinone) for anode-active materials in high-density and rechargeable polymer/air batteries. J. Am. Chem. Soc. 133, 19839 (2011).Google Scholar
9. Kawai, T., Oyaizu, K., and Nishide, H.: High-density and robust charge storage with poly(anthraquinone-substituted norbornene) for organic electrode-active materials in polymer-air secondary batteries. Macromolecules 48, 2429 (2015).Google Scholar
10. Suzuki, T., Sato, T., Zhang, J., Kanao, M., Higuchi, M., and Maki, H.: Electrochemically switchable photoluminescence of an anionic dye in a cationic metallo-supramolecular polymer. J. Mater. Chem. C 4, 1594 (2016).Google Scholar
11. Li, F., Gore, D.N., Wang, S., and Lutkenhaus, J.L.: Unusual internal electron transfer in conjugated radical polymers. Angew. Chem., Int. Ed. 56, 9856 (2017).Google Scholar
12. Morris, M.A., An, H., Lutkenhaus, J.L., and Epps, T.H.: Harnessing the power of plastics: nanostructured polymer systems in lithium-ion batteries. ACS Energy Lett. 2, 1919 (2017).Google Scholar
13. Muench, S., Wild, A., Friebe, C., Haeupler, B., Janoschka, T., and Schubert, U.S.: Polymer-based organic batteries. Chem. Rev. 116, 9438 (2016).CrossRefGoogle ScholarPubMed
14. Iizuka, Y., Tanaka, M., and Kawakami, H.: Preparation and proton conductivity of phosphoric acid-doped blend membranes composed of sulfonated block copolyimides and polybenzimidazole. Polym. Int. 62, 703 (2013).Google Scholar
15. Tamura, T. and Kawakami, H.: Aligned electrospun nanofiber composite membranes for fuel cell electrolytes. Nano Lett. 10, 1324 (2010).CrossRefGoogle ScholarPubMed
16. Zhan, X., Facchetti, A., Barlow, S., Marks, T.J., Ratner, M.A., Wasielewski, M.R., and Marder, S.R.: Rylene and related diimides for organic electronics. Adv. Mater. 23, 268 (2011).CrossRefGoogle ScholarPubMed
17. Rundel, K., Maniam, S., Deshmukh, K., Gann, E., Prasad, S.K.K., Hodgkiss, J.M., Langford, S.J., and McNeill, C.R.: Naphthalene diimide-based small molecule acceptors for organic solar cells. J. Mater. Chem. A 5, 12266 (2017).CrossRefGoogle Scholar
18. Young, N.A., Drew, S.C., Maniam, S., and Langford, S.J.: Systematically studying the effect of fluoride on the properties of cyclophanes bearing naphthalene diimide and dialkoxyaryl groups. Chem. – Asian J. 12, 1668 (2017).CrossRefGoogle ScholarPubMed
19. Oyaizu, K., Hatemata, A., Choi, W., and Nishide, H.: Redox-active polyimide/carbon nanocomposite electrodes for reversible charge storage at negative potentials: expanding the functional horizon of polyimides. J. Mater. Chem. 20, 5404 (2010).CrossRefGoogle Scholar
20. Qin, H., Song, Z.P., Zhan, H., and Zhou, Y.H.: Aqueous rechargeable alkali-ion batteries with polyimide anode. J. Power Sources 249, 367 (2014).CrossRefGoogle Scholar
21. Tian, D., Zhang, H.-Z., Zhang, D.-S., Chang, Z., Han, J., Gao, X.-P., and Bu, X.-H.: Li-ion storage and gas adsorption properties of porous polyimides. RSC Adv. 4, 7506 (2014).Google Scholar
22. Ulrich, S., Petitjean, A., and Lehn, J.-M.: Metallo-controlled dynamic molecular tweezers: design, synthesis, and self-assembly by metal-ion coordination. Eur. J. Inorg. Chem. 2010, 1913 (2010).CrossRefGoogle Scholar
23. Maniam, S., Sandanayake, S., Izgorodina, E.I., and Langford, S.J.: Unusual products from oxidation of naphthalene diimides. Asian J. Org. Chem. 5, 490 (2016).Google Scholar
24. Bhosale, S.V., Jani, C.H., and Langford, S.J.: Chemistry of naphthalene diimides. Chem. Soc. Rev. 37, 331 (2008).Google Scholar
25. De Blase, C.R., Hernandez-Burgos, K., Rotter, J.M., Fortman, D.J., Abreu, D.d.S., Timm, R.A., Diogenes, I.C.N., Kubota, L.T., Abruna, H.D., and Dichtel, W.R.: Cation-dependent stabilization of electrogenerated naphthalene diimide dianions in porous polymer thin films and their application to electrical energy storage. Angew. Chem., Int. Ed. 54, 13225 (2015).Google Scholar
26. Sano, N., Tomita, W., Hara, S., Min, C.-M., Lee, J.-S., Oyaizu, K., and Nishide, H.: Polyviologen hydrogel with high-rate capability for anodes toward an aqueous electrolyte-type and organic-based rechargeable device. ACS Appl. Mater. Interfaces 5, 1355 (2013).CrossRefGoogle ScholarPubMed
27. Cozzi, F. and Siegel, J.S.: Interaction between stacked aryl groups in 1,8-diarylnaphthalenes: dominance of polar/π over charge-transfer effects. Pure Appl. Chem. 67, 683 (1995).Google Scholar
28. Glidewell, C., Low, J.N., Skakle, J.M.S., and Wardell, J.L.: 4-Nitrophenyl phenyl ether: sheets built from C-H⋯O and C-H⋯pi(Arene) hydrogen bonds. Acta Crystallogr. C 61, 185 (2005).Google Scholar
Supplementary material: File

Maniam et al supplementary material

Maniam et al supplementary material 1

Download Maniam et al supplementary material(File)
File 1.4 MB