Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-14T10:38:11.803Z Has data issue: false hasContentIssue false

The need for advanced three-dimensional neural models and developing enabling technologies

Published online by Cambridge University Press:  10 July 2017

Daniel Merryweather
Affiliation:
Department of Chemistry, School of Science, Loughborough University, Loughborough, Leicestershire LE11 3TU, UK
Paul Roach*
Affiliation:
Department of Chemistry, School of Science, Loughborough University, Loughborough, Leicestershire LE11 3TU, UK
*
Address all correspondence to Paul Roach at p.roach@lboro.ac.uk
Get access

Abstract

Neurological and psychiatric disorders account for an increasing proportion of the global disease burden. Correspondingly the neuropharmaceutical industry has experienced a significant contraction in recent years resulting in a poor variety of therapies available to treat an expanding range of conditions. Perhaps the greatest contributor to this failure in drug-discovery is the lack of understanding of the underlying biology of the nervous system and how molecular scale events translate into macroscale pathologies. Due to the unique nature of the human nervous system commonly used model organisms are often poorly representative of human pathologies resulting in a need for the development of advanced in vitro models that are capable of faithfully modeling complex structures within the brain. In this prospective, strategies for the generation of neuronal circuits and cultivation of complex three-dimensional (3D) cultures are explored. Frequently these constructs provide valuable insights into systems and processes that are difficult to explore in vivo due to the isolated and delicate nature of neuronal tissues. New developments are required to assess the physiological functions of 3D tissues in vitro.

Type
Biomaterials for 3D Cell Biology Prospective Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Mathers, C., Fat, D.M., and Boerma, J.T.: The Global Burden of Disease: 2004 Update (World Health Organization, Switzerland, 2008).Google Scholar
2.Wittchen, H.U., Jacobi, F., Rehm, J., Gustavsson, A., Svensson, M., and Jönsson, B.: The size and burden of mental disorders and other disorders of the brain in Europe 2010. Eur. Neuropsychopharmacol. 21(9), 655679 (2010).Google Scholar
3.Olesen, J., Gustavsson, A., Svensson, M., Wittchen, H.U., and Jönsson, B.: The economic cost of brain disorders in Europe. Eur. J. Neurol. 19, 155162 (2012).Google Scholar
4.inVentive Health PR Group. An Advocacy Rx for Progress in Mental Health, InVentiv Health Blog (2017). Available at: http://eddas.eu/an-advocacy-rx-for-progress-in-mental-health/ (accessed March 20, 2017).Google Scholar
5.Hyman, S.E.: Revolution stalled. Sci. Transl. Med. 4(155), 155159 (2012).Google Scholar
6.Skripka-Serry, J.: The great neuro-pipeline brain drain. Drug Discov. World. Blog post (2013). Available at http://www.ddw-online.com/therapeutics/p216813-the-great-neuro-pipeline-brain-drain-(and-why-big-pharma-hasn-t-given-up-on-cns-disorders)-fall-13.html (accessed March 22, 2017).Google Scholar
7.Kanwisher, N.: Functional specificity in the human brain: a window into the functional architecture of the mind. Proc. Natl. Acad. Sci. USA 107, 1116311170 (2010).Google Scholar
8.Sporns, O., Tononi, G., and Kötter, R.: The human connectome: a structural description of the human brain. PLoS Comput. Biol. 1, e42 (2005).Google Scholar
9.Herculano-Houzel, S., Mota, B., and Lent, R.: Cellular scaling rules for rodent brains. Proc. Natl. Acad. Sci. USA 103, 1213812143 (2006).Google Scholar
10.Dorus, S., Vallender, E.J., Evans, P.D., Anderson, J.R., Gilbert, S.L., Mahowald, M., Wyckoff, G.J., Malcom, C.M., and Lahn, B.T.: Accelerated evolution of nervous system genes in the origin of Homo sapiens. Cell 119, 10271040 (2004).Google Scholar
11.Sherwood, C.C., Subiaul, F., and Zawidzki, T.W.: A natural history of the human mind: tracing evolutionary changes in brain and cognition. J. Anat. 212, 426454 (2008).Google Scholar
12.Smart, I.H., Dehay, C., Giroud, P., Berland, M., and Kennedy, H.: Unique morphological features of the proliferative zones and postmitotic compartments of the neural epithelium giving rise to striate and extrastriate cortex in the monkey. Cereb. Cortex 12, 3753 (2002).Google Scholar
13.Sadaghiani, B., Crawford, B.J., and Vielkind, J.R.: Changes in the distribution of extracellular matrix components during neural crest development in Xiphophorus spp. embryos. Can. J. Zool. 72, 13401353 (1994).Google Scholar
14.Hartfuss, E., Galli, R., Heins, N., and Götz, M.: Characterization of CNS precursor subtypes and radial glia. Dev. Biol. 229, 1530 (2001).Google Scholar
15.Anthony, T.E., Klein, C., Fishell, G., and Heintz, N.: Radial glia serve as neuronal progenitors in all regions of the central nervous system. Neuron 41, 881890 (2004).Google Scholar
16.Ferri, R.T. and Levitt, P.: Regulation of regional differences in the differentiation of cerebral cortical neurons by EGF family-matrix interactions. Development 121, 11511160 (1995).Google Scholar
17.Barros, C.S., Franco, S.J., and Müller, U.: Extracellular matrix: functions in the nervous system. Cold Spring Harb. Perspect. Biol. 3, a005108 (2011).Google Scholar
18.Barnes, J.M., Przybyla, L., and Weaver, V.M.: Tissue mechanics regulate brain development, homeostasis and disease. J. Cell Sci. 130, 7182 (2017).Google Scholar
19.Koser, D.E., Thompson, A.J., Foster, S.K., Dwivedy, A., Pillai, E.K., Sheridan, G.K., Svoboda, H., Viana, M., da F Costa, L., Guck, J., and Holt, C.E.: Mechanosensing is critical for axon growth in the developing brain. Nat. Neurosci. 19, 15921598 (2016).Google Scholar
20.Petros, T.J., Tyson, J.A., and Anderson, S.A.: Pluripotent stem cells for the study of CNS development. Front. Mol. Neurosci. 4, 3041 (2011).Google Scholar
21.Paridaen, J.T. and Huttner, W.B.: Neurogenesis during development of the vertebrate central nervous system. EMBO Rep. 15, 351364 (2014).Google Scholar
22.Medberry, C.J., Crapo, P.M., Siu, B.F., Carruthers, C.A., Wolf, M.T., Nagarkar, S.P., Agrawal, V., Jones, K.E., Kelly, J., Johnson, S.A., and Velankar, S.S.: Hydrogels derived from central nervous system extracellular matrix. Biomaterials 34, 10331040 (2013).Google Scholar
23.Rutka, J.T., Apodaca, G., Stern, R., and Rosenblum, M.: The extracellular matrix of the central and peripheral nervous systems: structure and function. J. Neurosurg. 69, 155170 (1988).Google Scholar
24.Eva, R. and Fawcett, J.: Integrin signalling and traffic during axon growth and regeneration. Curr. Opin. Neurobiol. 27, 179185 (2014).Google Scholar
25.Saha, K., Keung, A.J., Irwin, E.F., Li, Y., Little, L., Schaffer, D.V., and Healy, K.E.: Substrate modulus directs neural stem cell behavior. Biophys. J. 95, 44264438 (2008).Google Scholar
26.Grant, P.K. and Moens, C.B.: The neuroepithelial basement membrane serves as a boundary and a substrate for neuron migration in the zebrafish hindbrain. Neural Dev. 5, 9 (2010).Google Scholar
27.Burnside, E.R. and Bradbury, E.J.: Review: manipulating the extracellular matrix and its role in brain and spinal cord plasticity and repair. Neuropathol. Appl. Neurobiol. 40, 2659 (2014).Google Scholar
28.Dityatev, A., Brückner, G., Dityateva, G., Grosche, J., Kleene, R., and Schachner, M.: Activity-dependent formation and functions of chondroitin sulfate-rich extracellular matrix of perineuronal nets. Dev. Neurobiol. 67, 570588 (2007).Google Scholar
29.Giamanco, K.A., Morawski, M., and Matthews, R.T.: Perineuronal net formation and structure in aggrecan knockout mice. Neuroscience 170, 13141327 (2010).Google Scholar
30.Weber, P., Bartsch, U., Rasband, M.N., Czaniera, R., Lang, Y., Bluethmann, H., Margolis, R.U., Levinson, S.R., Shrager, P., Montag, D., and Schachner, M.: Mice deficient for tenascin-R display alterations of the extracellular matrix and decreased axonal conduction velocities in the CNS. J. Neurosci. 19, 42454262 (1999).Google Scholar
31.Bousquet, J. and Meunier, J.M.: Organotypic culture, on natural and artificial media, of fragments of the adult rat hypophysis. C. R. Seances Soc. Biol. Fil. 156, 6567 (1962).Google Scholar
32.Bragin, A.G. and Vinogradova, O.S.: Comparison of neuronal activity in septal and hippocampal grafts developing in the anterior eye chamber of the rat. Dev. Brain Res. 10, 279286 (1983).Google Scholar
33.Fisher, R.L. and Vickers, A.E.: Preparation and culture of precision-cut organ slices from human and animal. Xenobiotica 43, 814 (2013).Google Scholar
34.Pozzi, D., Ban, J., Iseppon, F., and Torre, V.: An improved method for growing neurons: comparison with standard protocols. J. Neurosci. Methods 280, 110 (2017).Google Scholar
35.Henschen, A., Hoffer, B., and Olson, L.: Spinal cord grafts in oculo: survival, growth, histological organization and electrophysiological characteristics. Exp. Brain Res. 60, 3847 (1985).Google Scholar
36.Marksteiner, J. and Humpel, C.: Beta-amyloid expression, release and extracellular deposition in aged rat brain slices. Mol. Psychiatry 13, 939952 (2008).Google Scholar
37.Alcántara, S., Frisén, J., del Río, J.A., Soriano, E., Barbacid, M., and Silos-Santiago:, I. TrkB signaling is required for postnatal survival of CNS neurons and protects hippocampal and motor neurons from axotomy-induced cell death. J. Neurosci. 17, 36233633 (1997).Google Scholar
38.Weis, C., Marksteiner, J., and Humpel, C.: Nerve growth factor and glial cell line-derived neurotrophic factor restore the cholinergic neuronal phenotype in organotypic brain slices of the basal nucleus of Meynert. Neuroscience 102, 129138 (2001).Google Scholar
39.Elkin, B.S., Azeloglu, E.U., Costa, K.D., and Morrison, B. III: Mechanical heterogeneity of the rat hippocampus measured by atomic force microscope indentation. J. Neurotrauma 24, 812822 (2007).Google Scholar
40.Bouchonville, N., Meyer, M., Gaude, C., Gay, E., Ratel, D., and Nicolas, A.: AFM mapping of the elastic properties of brain tissue reveals kPa mm(−1) gradients of rigidity. Soft Mat. 12, 62326239 (2016).Google Scholar
41.Moeendarbary, E., Weber, I.P., Sheridan, G.K., Koser, D.E., Soleman, S., Haenzi, B., Bradbury, E.J., Fawcett, J., and Franze, K.: The soft mechanical signature of glial scars in the central nervous system. Nat. Commun. 8, 14787 (2017).Google Scholar
42.Leipzig, N.D. and Shoichet, M.S.. The effect of substrate stiffness on adult neural stem cell behavior. Biomaterials 30, 68676878 (2009).Google Scholar
43.Moshayedi, P., Ng, G., Kwok, J.C., Yeo, G.S., Bryant, C.E., Fawcett, J.W., Franze, K., and Guck, J.: The relationship between glial cell mechanosensitivity and foreign body reactions in the central nervous system. Biomaterials 35, 39193925 (2014).Google Scholar
44.Baker, B.M. and Chen, C.S.: Deconstructing the third dimension—how 3D culture microenvironments alter cellular cues. J. Cell Sci. 125, 30153024 (2012).Google Scholar
45.Caralt, M., Uzarski, J.S., Iacob, S., Obergfell, K.P., Berg, N., Bijonowski, B.M., Kiefer, K.M., Ward, H.H., Wandinger-Ness, A., Miller, W.M., and Zhang, Z.J.: Optimization and critical evaluation of decellularization strategies to develop renal extracellular matrix scaffolds as biological templates for organ engineering and transplantation. Am. J. Transpl. 15, 6475 (2015).Google Scholar
46.Mellott, A.J., Shinogle, H.E., Nelson-Brantley, J.G., Detamore, M.S., and Staecker, H.: Exploiting decellularized cochleae as scaffolds for inner ear tissue engineering. Stem Cell Res. Ther. 8, 41 (2017).Google Scholar
47.De Waele, J., Reekmans, K., Daans, J., Goossens, H., Berneman, Z., and Ponsaerts, P.: 3D culture of murine neural stem cells on decellularized mouse brain sections. Biomaterials 41, 122131 (2015).Google Scholar
48.Sood, D., Chwalek, K., Stuntz, E., Pouli, D., Du, C., Tang-Schomer, M., Georgakoudi, I., Black, L.D. III, and Kaplan, D.L.: Fetal brain extracellular matrix boosts neuronal network formation in 3d bioengineered model of cortical brain tissue. ACS Biomater. Sci. Eng. 2, 131140 (2015).Google Scholar
49.Faissner, A. and Reinhard, J.: The extracellular matrix compartment of neural stem and glial progenitor cells. Glia 63, 13301349 (2015).Google Scholar
50.Temple, S.: The development of neural stem cells. Nature 414, 112117 (2001).Google Scholar
51.Watanabe, K., Kamiya, D., Nishiyama, A., Katayama, T., Nozaki, S., Kawasaki, H., Watanabe, Y., Mizuseki, K., and Sasai, Y.: Directed differentiation of telencephalic precursors from embryonic stem cells. Nat. Neurosci. 8, 288296 (2005).Google Scholar
52.Eiraku, M., Watanabe, K., Matsuo-Takasaki, M., Kawada, M., Yonemura, S., Matsumura, M., Wataya, T., Nishiyama, A., Muguruma, K., and Sasai, Y.: Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. Cell Stem Cell 3, 519532 (2008).Google Scholar
53.Maroof, A.M., Keros, S., Tyson, J.A., Ying, S.W., Ganat, Y.M., Merkle, F.T., Liu, B., Goulburn, A., Stanley, E.G., Elefanty, A.G., and Widmer, H.R.: Directed differentiation and functional maturation of cortical interneurons from human embryonic stem cells. Cell Stem Cell 12, 559572 (2013).Google Scholar
54.Mariani, J., Simonini, M.V., Palejev, D., Tomasini, L., Coppola, G., Szekely, A.M., Horvath, T.L., and Vaccarino, F.M.: Modeling human cortical development in vitro using induced pluripotent stem cells. Proc. Natl. Acad. Sci. USA 109, 1277012775 (2012).Google Scholar
55.Lancaster, M.A., Renner, M., Martin, C.A., Wenzel, D., Bicknell, L.S., Hurles, M.E., Homfray, T., Penninger, J.M., Jackson, A.P., and Knoblich, J.A.: Cerebral organoids model human brain development and microcephaly. Nature 501, 373379 (2013).Google Scholar
56.Paşca, A.M., Sloan, S.A., Clarke, L.E., Tian, Y., Makinson, C.D., Huber, N., Kim, C.H., Park, J.Y., O'rourke, N.A., Nguyen, K.D., and Smith, S.J.: Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture. Nat. Methods 12, 671678 (2015).Google Scholar
57.Mallinger, R., Kulnig, W., and Böck, P.: Symmetrically banded collagen fibrils: observations on a new cross striation pattern in vivo. Anat. Rec. 232, 4551 (1992).Google Scholar
58.Poole, K., Khairy, K., Friedrichs, J., Franz, C., Cisneros, D.A., Howard, J., and Mueller, D.: Molecular-scale topographic cues induce the orientation and directional movement of fibroblasts on two-dimensional collagen surfaces. J. Mol. Biol. 349, 380386 (2005).Google Scholar
59.Patla, I., Volberg, T., Elad, N., Hirschfeld-Warneken, V., Grashoff, C., Fässler, R., Spatz, J.P., Geiger, B., and Medalia, O.: Dissecting the molecular architecture of integrin adhesion sites by cryo-electron tomography. Nat. Cell Biol. 12, 909915 (2010).Google Scholar
60.Arnold, M., Cavalcanti-Adam, E.A., Glass, R., Blümmel, J., Eck, W., Kantlehner, M., Kessler, H., and Spatz, J.P.: Activation of integrin function by nanopatterned adhesive interfaces. Chemphyschem 5, 383388 (2004).Google Scholar
61.Wang, X., Ye, K., Li, Z., Yan, C., and Ding, J.: Adhesion, proliferation, and differentiation of mesenchymal stem cells on RGD nanopatterns of varied nanospacings. Organogenesis 9, 280286 (2013).Google Scholar
62.Cavallini, M., Albonetti, C., and Biscarini, F.: Nanopatterning soluble multifunctional materials by unconventional wet lithography. Adv. Mater. 21, 10431053 (2009).Google Scholar
63.Chelli, B., Barbalinardo, M., Valle, F., Greco, P., Bystrenova, E., Bianchi, M., and Biscarini, F.: Neural cell alignment by patterning gradients of the extracellular matrix protein laminin. Interface Focus 4, 20130041 (2014).Google Scholar
64.Hirsh, S.L., McKenzie, D.R., Nosworthy, N.J., Denman, J.A., Sezerman, O.U., and Bilek, M.M.: The Vroman effect: competitive protein exchange with dynamic multilayer protein aggregates. Colloids Surf. B: Biointerfaces 103, 395404 (2013).Google Scholar
65.Roach, P., Farrar, D., and Perry, C.C.: Interpretation of protein adsorption: surface-induced conformational changes. J. Am. Chem. Soc. 127, 81688173 (2005).Google Scholar
66.Morin, F., Nishimura, N., Griscom, L., LePioufle, B., Fujita, H., Takamura, Y., and Tamiya, E.: Constraining the connectivity of neuronal networks cultured on microelectrode arrays with microfluidic techniques: a step towards neuron-based functional chips. Biosens. Bioelectron. 21, 10931100 (2006).Google Scholar
67.Renault, R., Sukenik, N., Descroix, S., Malaquin, L., Viovy, J.L., Peyrin, J.M., Bottani, S., Monceau, P., Moses, E., and Vignes, M.: Combining microfluidics, optogenetics and calcium imaging to study neuronal communication in vitro. PLoS ONE 10, e0120680 (2015).Google Scholar
68.Pan, L., Alagapan, S., Franca, E., Leondopulos, S.S., DeMarse, T.B., Brewer, G.J., and Wheeler, B.C.: An in vitro method to manipulate the direction and functional strength between neural populations. Front. Neural Circuits 9, 32 (2015).Google Scholar
69.Obien, M.E.J., Deligkaris, K., Bullmann, T., Bakkum, D.J., and Frey, U.: Revealing neuronal function through microelectrode array recordings. Front. Neurosci. 8, 423 (2015).Google Scholar
70.Grienberger, C. and Konnerth, A.: Imaging calcium in neurons. Neuron 73, 862885 (2012).Google Scholar
71.Groothuis, J., Ramsey, N.F., Ramakers, G.M., and van der Plasse, G.: Physiological challenges for intracortical electrodes. Brain Stimul. 7, 16 (2014).Google Scholar
72.Van Vlierberghe, S., Dubruel, P., and Schacht, E.: Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review. Biomacromolecules 12, 13871408 (2011).Google Scholar
73.Thiele, J., Ma, Y., Bruekers, S., Ma, S., and Huck, W.T.: Designer hydrogels for cell cultures: a materials selection guide. Adv. Mater. 26, 125148 (2014).Google Scholar
74.Hoffman, A.S.: Hydrogels for biomedical applications. Adv. Drug Deliv. Rev. 64, 1823 (2012).Google Scholar
75.Lee, M.K., Rich, M.H., Baek, K., Lee, J., and Kong, H.: Bioinspired tuning of hydrogel permeability-rigidity dependency for 3D cell culture. Sci. Rep. 5, 8948 (2015).Google Scholar
76.Khetan, S., Chung, C., and Burdick, J.A.: Tuning hydrogel properties for applications in tissue engineering. In Engineering in Medicine and Biology Society, 2009. EMBC 2009. In Annu. Int. Conf. IEEE (2094–2096). IEEE (2009).Google Scholar
77.Wang, L.S., Chung, J.E., Chan, P.P.Y., and Kurisawa, M.: Injectable biodegradable hydrogels with tunable mechanical properties for the stimulation of neurogenesic differentiation of human mesenchymal stem cells in 3D culture. Biomaterials 31, 11481157 (2009).Google Scholar
78.Kloxin, A.M., Kasko, A.M., Salinas, C.N., and Anseth, K.S.: Photodegradable hydrogels for dynamic tuning of physical and chemical properties. Science 324, 5963 (2009).Google Scholar
79.Pasqui, D., De Cagna, M., and Barbucci, R.: Polysaccharide-based hydrogels: the key role of water in affecting mechanical properties. Polymers 4, 15171534 (2012).Google Scholar
80.Tibbitt, M.W. and Anseth, K.S.: Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol. Bioeng. 103, 655663 (2009).Google Scholar
81.Plessner, M., Melak, M., Chinchilla, P., Baarlink, C., and Grosse, R.: Nuclear F-actin formation and reorganization upon cell spreading. J. Biol. Chem. 290, 1120911216 (2015).Google Scholar
82.Lampe, K.J., Antaris, A.L., and Heilshorn, S.C.: Design of three-dimensional engineered protein hydrogels for tailored control of neurite growth. Acta Biomater. 9, 55905599 (2013).Google Scholar
83.Berns, E.J., Álvarez, Z., Goldberger, J.E., Boekhoven, J., Kessler, J.A., Kuhn, H.G., and Stu, S.I.: A tenascin-C mimetic peptide amphiphile nanofiber gel promotes neurite outgrowth and cell migration of neurosphere-derived cells. Acta Biomater. 37, 5058 (2016).Google Scholar
84.Koivist, J.T., Joki, T., Parraga, J.E., Pääkkönen, R., Ylä-Outinen, L., Salonen, L., Jönkkäri, I., Peltola, M., Ihalainen, T.O., and Narkilahti, S.: Bioamine-crosslinked gellan gum hydrogel for neural tissue engineering. Biomed. Mater. 12(2), 025014 (2017).Google Scholar
85.Ham, T.R., Farrag, M., and Leipzig, N.D.: Covalent growth factor tethering to direct neural stem cell differentiation and self-organization. Acta Biomater. 53, 140151 (2017).Google Scholar
86.Zhang, Z., Freitas, B.C., Qian, H., Lux, J., Acab, A., Trujillo, C.A., Herai, R.H., Huu, V.A.N., Wen, J.H., Joshi-Barr, S., Karpiak, J.V., Engler, A.J., Fu, X., Muotri, A.R., and Almutairi, A.: Layered hydrogels accelerate iPSC-derived neuronal maturation and reveal migration defects caused by MeCP2 dysfunction. Proc. Natl. Acad. Sci. USA 113, 31853190 (2016).Google Scholar
87.Yang, F., Murugan, R., Wang, S., and Ramakrishna, S.: Electrospinning of nano/micro scale poly (L-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials 26, 26032610 (2005).Google Scholar
88.Schaub, N.J., Johnson, C.D., Cooper, B., and Gilbert, R.J.: Electrospun fibers for spinal cord injury research and regeneration. J. Neurotrauma 33, 14051415 (2016).Google Scholar
89.Cirillo, V., Guarino, V., Alvarez-Perez, M.A., Marrese, M., and Ambrosio, L.: Optimization of fully aligned bioactive electrospun fibers for “in vitro” nerve guidance. J. Mater. Sci., Mater. Med. 25(10), 23232332 (2014).Google Scholar
90.Xie, J., Liu, W., MacEwan, M.R., Bridgman, P.C., and Xia, Y.: Neurite outgrowth on electrospun nanofibers with uniaxial alignment: the effects of fiber density, surface coating, and supporting substrate. ACS Nano 8(2), 18781885 (2014).Google Scholar
91.Roach, P., Parker, T., Gadegaard, N., and Alexander, M.R.: A bio-inspired neural environment to control neurons comprising radial glia, substrate chemistry and topography. Biomater. Sci. 1, 8393 (2013).Google Scholar
92.Debanne, D., Campanac, E., Bialowas, A., Carlier, E., and Alcaraz, G.: Axon physiology. Physiol. Rev. 91, 555602 (2011).Google Scholar
93.Mattila, P.K. and Lappalainen, P.: Filopodia: molecular architecture and cellular functions. Nat. Rev. Mol. Cell Biol. 9, 446454 (2008).Google Scholar
94.Daud, M.F., Pawar, K.C., Claeyssens, F., Ryan, A.J., and Haycock, J.W.: An aligned 3D neuronal-glial co-culture model for peripheral nerve studies. Biomaterials 33, 59015913 (2012).Google Scholar
95.Qu, J., Wang, D., Wang, H., Dong, Y., Zhang, F., Zuo, B., and Zhang, H.: Electrospun silk fibroin nanofibers in different diameters support neurite outgrowth and promote astrocyte migration. J. Biomed. Mater. Res. A 101, 26672678 (2013).Google Scholar
96.Wang, H.B., Mullins, M.E., Cregg, J.M., McCarthy, C.W., and Gilbert, R.J.: Varying the diameter of aligned electrospun fibers alters neurite outgrowth and Schwann cell migration. Acta Biomater. 6, 29702978 (2010).Google Scholar
97.He, L., Liao, S., Quan, D., Ma, K., Chan, C., Ramakrishna, S., and Lu, J.: Synergistic effects of electrospun PLLA fiber dimension and pattern on neonatal mouse cerebellum C17. 2 stem cells. Acta Biomater. 6, 29602969 (2010).Google Scholar
98.Wang, J., Ye, R., Wei, Y., Wang, H., Xu, X., Zhang, F., Qu, J., Zuo, B., and Zhang, H.: The effects of electrospun TSF nanofiber diameter and alignment on neuronal differentiation of human embryonic stem cells. J. Biomed. Mater. Res. A 100, 632645 (2011).Google Scholar
99.Christopherson, G.T., Song, H., and Mao, H.Q.: The influence of fiber diameter of electrospun substrates on neural stem cell differentiation and proliferation. Biomaterials 30, 556564 (2009).Google Scholar