Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-13T14:40:43.285Z Has data issue: false hasContentIssue false

Naphthalene diimide-based polymeric semiconductors. Effect of chlorine incorporation and n-channel transistors operating in water

Published online by Cambridge University Press:  11 February 2016

Gi-Seong Ryu
Affiliation:
Advanced Energy and Electronic Materials Research Center, Dongguk University, 30, Pil-dong-ro, 1-gil, Jung-gu, Seoul 100-715, Republic of Korea
Zhihua Chen
Affiliation:
Polyera Corporation, 8045 Lamon Avenue, Skokie, Illinios 60077, USA
Hakan Usta*
Affiliation:
Department of Materials Science and Nanotechnology Engineering, Abdullah Gül University, Kayseri, Turkey
Yong-Young Noh*
Affiliation:
Advanced Energy and Electronic Materials Research Center, Dongguk University, 30, Pil-dong-ro, 1-gil, Jung-gu, Seoul 100-715, Republic of Korea Department of Energy and Materials Engineering, Dongguk University, 30, Pil-dong-ro, 1-gil, Jung-gu, Seoul 100-715, Republic of Korea
Antonio Facchetti*
Affiliation:
Polyera Corporation, 8045 Lamon Avenue, Skokie, Illinios 60077, USA Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, Saudi Arabia
*
Address all correspondence to Antonio Facchetti, Yong-Young Noh, Hakan Usta at afacchetti@polyera.com, yynoh@dongguk.edu, hakan.usta@agu.edu.tr
Address all correspondence to Antonio Facchetti, Yong-Young Noh, Hakan Usta at afacchetti@polyera.com, yynoh@dongguk.edu, hakan.usta@agu.edu.tr
Address all correspondence to Antonio Facchetti, Yong-Young Noh, Hakan Usta at afacchetti@polyera.com, yynoh@dongguk.edu, hakan.usta@agu.edu.tr
Get access

Abstract

We demonstrate here the design, synthesis and characterization of two new chlorinated polymers, P(NDI2HD–T2Cl2) and P(NDI2OD–T2Cl2) based on N,N′-difunctionalized naphthalene diimide (NDI) and 3,3′-dichloro-2,2′-bithiophene (T2Cl2) moieties. Our results indicate that organic thin-film transistors (OTFTs) based on these new chlorinated polymers exhibit electron mobilities approaching 0.1 cm2V−1s−1 (I on:I off ~ 106–107), with far less ambipolarity due to their lower highest occupied molecular orbital energies, and they are more stable under deleterious high-humidity conditions (RH ~ 60%) and upon submersion in water, compared with those fabricated with the parent non-chlorinated polymers. In addition, OTFTs fabricated with the new chlorinated polymers exhibit excellent operational stabilities with <3% degradations upon bias-stress test.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Facchetti, A.: π-conjugated polymers for organic electronics and photovoltaic cell applications. Chem. Mater. 23, 733758 (2011).CrossRefGoogle Scholar
2. Kola, S., Kim, J.H., Ireland, R., Yeh, M.-L., Smith, K., Guo, W., and Katz, H.E.: Pyromellitic diimide–ethynylene-based homopolymer film as an N-channel organic field-effect transistor semiconductor. ACS Macro Lett. 2, 664669 (2013).CrossRefGoogle ScholarPubMed
3. Wang, S., Fabiano, S., Himmelberger, S., Puzinas, S., Crispin, X., Salleo, A., and Berggren, M.: Experimental evidence that short-range intermolecular aggregation is sufficient for efficient charge transport in conjugated polymers. Proc. Natl. Acad. Sci. USA 112, 1059910604 (2015).CrossRefGoogle ScholarPubMed
4. Lochner, C.M., Khan, Y., Pierre, A., and Arias, A.C.: All-organic optoelectronic sensor for pulse oximetry. Nat. Commun. 5, 5745 (2014).CrossRefGoogle ScholarPubMed
5. Piliego, C., Holcombe, T.W., Douglas, J.D., Woo, C.H., Beaujuge, P.M., and Fréchet, J.M.: Synthetic control of structural order in N-alkylthieno[3,4-c]pyrrole-4,6-dione-based polymers for efficient solar cells. J. Am. Chem. Soc. 132, 75957597 (2010).CrossRefGoogle ScholarPubMed
6. Yeh, M., Wang, S., Martinez Hardigree, J.F., Podzorov, V., and Katz, H.E.: Effect of side chain length on film structure and electron mobility of core-unsubstituted pyromellitic diimides and enhanced mobility of the dibrominated core using the optimized side chain. J. Mater. Chem. C 3, 30293037 (2015).CrossRefGoogle Scholar
7. Himmelberger, S., Duong, D.T., Northrup, J.E., Rivnay, J., Koch, F.P.V., Beckingham, B.S., Stigelin, N., Segalman, R.A., Mannsfeld, S.C.B., and Salleo, A.: Role of side-chain branching on thin-film structure and electronic properties of polythiophenes. Adv. Funct. Mater. 25, 26162624 (2015).CrossRefGoogle Scholar
8. Kumar, B., Kaushik, B.K., and Negi, Y.S.: Organic thin film transistors: structures, models, materials, fabrication, and applications: a review. Polym. Rev. 54, 33111 (2014).CrossRefGoogle Scholar
9. Himmelberger, S., Vandewal, K., Fei, Z., Heeney, M., and Salleo, A.: Role of molecular weight distribution on charge transport in semiconducting polymers. Macromolecules 47, 71517157 (2014).CrossRefGoogle Scholar
10. Pierre, A., Deckman, I., Lechêne, P.B., and Arias, A.C.: High detectivity all-printed organic photodiodes. Adv. Mater. 27, 64116417 (2015).CrossRefGoogle ScholarPubMed
11. Pierre, A., Sadeghi, M., Payne, M.M., Facchetti, A., Anthony, J.E., and Arias, A.C.: All-printed flexible organic transistors enabled by surface tension-guided blade coating. Adv. Mater. 26, 57225727 (2014).CrossRefGoogle ScholarPubMed
12. Mandal, S., Dell'Erba, G., Luzio, A., Bucella, S.G., Perinot, A., Calloni, A., Berti, G., Bussetti, G., Duò, L., Facchetti, A., Noh, Y.-Y., and Caironi, M.: Fully-printed, all-polymer, bendable and highly transparent complementary logic circuits. Org. Electron. 20, 132141 (2015).CrossRefGoogle Scholar
13. Himmelberger, S. and Salleo, A.: Engineering semiconducting polymers for efficient charge transport. MRS Commun. 5, 383395 (2015).CrossRefGoogle Scholar
14. Li, J., Zhao, Y., Tan, H.S., Guo, Y., Di, C.-A., Yu, G., Liu, Y., Lin, M., Lim, S.H., and Zhou, Y.: A stable solution-processed polymer semiconductor with record high-mobility for printed transistors. Sci. Rep. 2, 754 (2012).CrossRefGoogle ScholarPubMed
15. Heeger, A.J.: Semiconducting polymers: the third generation. Chem. Soc. Rev. 39, 23542371 (2010).CrossRefGoogle ScholarPubMed
16. Baeg, K.-J., Khim, D., Kim, J.-H., Kang, M., You, I.-K., Kim, D.-Y., and Noh, Y.-Y.: Improved performance uniformity of inkjet printed n-channel organic field-effect transistors and complementary inverters. Org. Electron. 12, 634640 (2011).CrossRefGoogle Scholar
17. Fukutomi, Y., Nakano, M., Hu, J.-Y., Osaka, I., and Takimiya, K.: Naphthodithiophenediimide (NDTI): synthesis, structure, and applications. J. Am. Chem. Soc. 135, 1144511448 (2013).CrossRefGoogle ScholarPubMed
18. Sinha, J., Lee, S.J., Kong, H., Swift, T.W., and Katz, H.E.: Tetrathiafulvalene (TTF)-functionalized thiophene copolymerized with 3,3″-didodecylquaterthiophene: synthesis, TTF trapping activity, and response to trinitrotoluene. Macromolecules 46, 708717 (2013).CrossRefGoogle Scholar
19. Li, Y., Sonar, P., Singh, S.P., Soh, M.S., van Meurs, M., and Tan, J.: Annealing-free high-mobility diketopyrrolopyrrole–quaterthiophene copolymer for solution-processed organic thin film transistors. J. Am. Chem. Soc. 133, 21982204 (2011).CrossRefGoogle ScholarPubMed
20. Usta, H., Yilmaz, M.D., Avestro, A.-J., Boudinet, D., Denti, M., Zhao, W., Stoddart, J.F., and Facchetti, A.: BODIPY–thiophene copolymers as p-channel semiconductors for organic thin-film transistors. Adv. Mater. 25, 43274334 (2013).CrossRefGoogle ScholarPubMed
21. Yuan, Y., Giri, G., Ayzner, A.L., Zoombelt, A.P., Mannsfeld, S.C., Chen, J., Nordlund, D., Toney, M.F., Huang, J., and Bao, Z.: Ultra-high mobility transparent organic thin film transistors grown by an off-centre spin-coating method. Nat. Commun. 5, 3005 (2014).CrossRefGoogle ScholarPubMed
22. Ryu, G.S., Park, K.H., Park, W.T., Kim, Y.H., and Noh, Y.Y.: High-performance diketopyrrolopyrrole-based organic field-effect transistors for flexible gas sensors. Org. Electron. 23, 7681 (2015).CrossRefGoogle Scholar
23. So, F. and Kondakov, D.: Degradation mechanisms in small-molecule and polymer organic light-emitting diodes. Adv. Mater. 22, 37623777 (2010).CrossRefGoogle ScholarPubMed
24. Ye, S.H., Yin, C.R., Zhou, Z., Hu, T.Q., Li, Y.H., Li, L., Xie, L.H., and Huang, W.: Solution-processed high-performance orange phosphorescent and white PLEDs with a high color-rendering index from an unprecedented π-stacked and π-conjugated host material. J. Polym. Sci. B: Polym. Phys. 52, 587595 (2014).CrossRefGoogle Scholar
25. Aizawa, N., Pu, Y.J., Chiba, T., Kawata, S., Sasabe, H., and Kido, J.: Instant low-temperature cross-linking of poly (N-vinylcarbazole) for solution-processed multilayer blue phosphorescent organic light-emitting devices. Adv. Mater. 26, 75437546 (2014).CrossRefGoogle ScholarPubMed
26. Dang, M.T., Hirsch, L., Wantz, G., and Wuest, J.D.: Controlling the morphology and performance of bulk heterojunctions in solar cells. lessons learned from the benchmark poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester system. Chem. Rev. 113, 37343765 (2013).CrossRefGoogle Scholar
27. Son, H.J., Wang, W., Xu, T., Liang, Y., Wu, Y., Li, G., and Yu, L.: Synthesis of fluorinated polythienothiophene-co-benzodithiophenes and effect of fluorination on the photovoltaic properties. J. Am. Chem. Soc. 133, 18851894 (2011).CrossRefGoogle ScholarPubMed
28. Li, H., Hwang, Y.J., Earmme, T., Huber, R.C., Courtright, B.A., O'Brien, C., Tolbert, S.H., and Jenekhe, S.A.: Polymer/polymer blend solar cells using tetraazabenzodifluoranthenediimide conjugated polymers as electron acceptors. Macromolecules 48, 17591766 (2015).CrossRefGoogle Scholar
29. Yasuda, T., Kuwabara, J., Han, L., and Kanbara, T.: Improved power conversion efficiency of bulk-heterojunction organic photovoltaic cells using neat C 70 as an effective acceptor for an amorphous π-conjugated polymer. Org. Electron. 25, 99104 (2015).CrossRefGoogle Scholar
30. Ullah, M., Tandy, K., Yambem, S.D., Aljada, M., Burn, P.L., Meredith, P., and Namdas, E.B.: Simultaneous enhancement of brightness, efficiency, and switching in RGB organic light emitting transistors. Adv. Mater. 25, 6213 (2013).CrossRefGoogle ScholarPubMed
31. Hiraoka, K., Kusumoto, Y., Ikezoe, I., Kajii, H., and Ohmori, Y.: Properties of polymer light-emitting transistors with Ag-nanowire source/drain electrodes fabricated on polymer substrate. Thin Solid Films 554, 184188 (2014).CrossRefGoogle Scholar
32. Usta, H., Sheets, W.C., Denti, M., Generali, G., Capelli, R., Lu, S., Yu, X., Muccini, M., and Facchetti, A.: Perfluoroalkyl-functionalized thiazole-thiophene oligomers as n-channel semiconductors in organic field-effect and light-emitting transistors. Chem. Mater. 26, 65426556 (2014).CrossRefGoogle Scholar
33. Tsumura, A., Koezuka, K., and Ando, T.: Macromolecular electronic device: field-effect transistor with a polythiophene thin film. Appl. Phys. Lett. 49, 12101212 (1986).CrossRefGoogle Scholar
34. Lee, T.W., Lee, D.H., Shin, J., Cho, M.J., and Choi, D.H.: Naphthodithiophene-diketopyrrolopyrrole-based donor–acceptor alternating π-conjugated polymers for organic thin-film transistors. J. Polym. Sci. A: Polym. Chem. 51, 52805290 (2013).CrossRefGoogle Scholar
35. Pan, H., Li, Y., Wu, Y., Liu, P., Ong, B.S., Zhu, S., and Xu, G.: Low-temperature, solution-processed, high-mobility polymer semiconductors for thin-film transistors. J. Am. Chem. Soc. 129, 41124113 (2007).CrossRefGoogle ScholarPubMed
36. Lei, T., Dou, J.-H., and Pei, J.: Influence of alkyl chain branching positions on the hole mobilities of polymer thin-film transistors. Adv. Mater. 24, 64576461 (2012).CrossRefGoogle ScholarPubMed
37. Mei, J., Kim, D.H., Ayzner, A.L., Toney, M.F., and Bao, Z.: Siloxane-terminated solubilizing side chains: bringing conjugated polymer backbones closer and boosting hole mobilities in thin-film transistors. J. Am. Chem. Soc. 133, 2013020133 (2011).CrossRefGoogle ScholarPubMed
38. Gao, X. and Zhao, Z.: High mobility organic semiconductors for field-effect transistors. Sci. China Chem. 58, 947968 (2015).CrossRefGoogle Scholar
39. Kim, G., Kang, S.J., Dutta, G.K., Han, Y.K., Shin, T.J., Noh, Y.Y., and Yang, C.: A thienoisoindigo-naphthalene polymer with ultrahigh mobility of 14.4 cm2/V·s that substantially exceeds Benchmark values for amorphous silicon semiconductors. J. Am. Chem. Soc. 136, 94779483 (2014).CrossRefGoogle Scholar
40. Yun, H.J., Kang, S.J., Xu, Y., Kim, S.O., Kim, Y.H., Noh, Y.Y., and Kwon, S.K.: Dramatic inversion of charge polarity in diketopyrrolopyrrole-based organic field-effect transistors via a simple nitrile group substitution. Adv. Mater. 26, 73007307 (2014).CrossRefGoogle Scholar
41. Zhang, F., Hu, Y., Schuettfort, T., Di, C., Gao, X., McNeill, C.R., Thomsen, L., Mannsfeld, S.C.B., Yuan, W., Sirringhaus, H., and Zhu, D.: Critical role of alkyl chain branching of organic semiconductors in enabling solution-processed N-channel organic thin-film transistors with mobility of up to 3.50 cm2 V–1 s–1 . J. Am. Chem. Soc. 135, 23382349 (2013).CrossRefGoogle ScholarPubMed
42. Matsidik, R., Komber, H., Luzio, A., Caironi, M., and Sommer, M.: Defect-free naphthalene diimidebithiophene copolymers with controlled molar mass and high performance via direct arylationpolycondensation. J. Am. Chem. Soc. 137, 67056711 (2015).CrossRefGoogle Scholar
43. Tseng, H.-R., Phan, H., Luo, C., Wang, M., Perez, L.A., Patel, S.N., Ying, L., Kramer, E.J., Nguyen, T.-Q., Bazan, G.C., and Heeger, A.J.: High-mobility field-effect transistors fabricated with macroscopic aligned semiconducting polymers. Adv. Mater. 26, 29932998 (2014).CrossRefGoogle ScholarPubMed
44. Yan, H., Chen, Z., Zheng, Y., Newman, C., Quinn, J.R., Dötz, F., Kastler, M., and Facchetti, A.: A high-mobility electron-transporting polymer for printed transistors. Nature 457, 679686 (2009).CrossRefGoogle ScholarPubMed
45. Kim, N.-K., Khim, D., Xu, Y., Lee, S.-H., Kang, M., Kim, J., Facchetti, A., Noh, Y.-Y., and Kim, D.Y.: Solution-processed barium salts as charge injection layers for high performance N-channel organic field-effect transistors. ACS Appl. Mater. Interfaces 6, 96149621 (2014).CrossRefGoogle ScholarPubMed
46. Chen, Z., Zheng, Y., Yan, H., and Facchetti, A.: Naphthalenedicarboximide- vs perylenedicarboximide-based copolymers. Synthesis and semiconducting properties in bottom-gate N-channel organic transistors. J. Am. Chem. Soc. 131, 89 (2009).CrossRefGoogle ScholarPubMed
47. Chen, H., Guo, Y., Mao, Z., Yu, G., Huang, J., Zhao, Y., and Liu, Y.: Naphthalenediimide-based copolymers incorporating vinyl-linkages for high-performance ambipolar field-effect transistors and complementary-like inverters under air. Chem. Mater. 25, 35893596 (2013).CrossRefGoogle Scholar
48. Kim, R., Amegadze, P.S., Kang, I., Yun, H.J., Noh, Y.Y., Kwon, S.K., and Kim, Y.H.: High-mobility air-stable naphthalene diimide-based copolymer containing extend π-conjugation for n-channel organic field effect transistors. Adv. Funct. Mater. 23, 57195727 (2013).CrossRefGoogle Scholar
49. Guo, X., Facchetti, A., and Marks, T.J.: Imide- and amide-functionalized polymer semiconductors. Chem. Rev. 114, 89439021 (2014).CrossRefGoogle ScholarPubMed
50. Usta, H., Kim, C., Wang, Z., Lu, S., Huang, H., Facchetti, A., and Marks, T.J.: Anthracenedicarboximides as air-stable N-channel semiconductors for thin-film transistors with remarkable current on–off ratios. J. Mater. Chem. 22, 44594472 (2012).CrossRefGoogle Scholar
51. Jones, B.A., Facchetti, A., Wasielewski, M.R., and Marks, T.J.: Tuning orbital energetics in arylenediimide semiconductors. Materials design for ambient stability of n-type charge transport. J. Am. Chem. Soc. 129, 1525915278 (2007).CrossRefGoogle Scholar
52. Anthopoulos, T.D., Anyfantis, G.C., Papavassiliou, G.C., and de Leeuw, D.M.: Air-stable ambipolar organic transistors. Appl. Phys. Lett. 90, 122105 (2007).CrossRefGoogle Scholar
53. Wang, M., Li, J., Zhao, G., Wu, Q., Huang, Y., Hu, W., Gao, X., Li, H., and Zhu, D.: High-performance organic field-effect transistors based on single and large-area aligned crystalline microribbons of 6,13-dichloropentacene. Adv. Mater. 25, 22292233 (2013).CrossRefGoogle ScholarPubMed
54. He, T., Stolte, M., and Würthner, F.: Air-stable n-channel organic single crystal field-effect transistors based on microribbons of core-chlorinated naphthalene diimide. Adv. Mater. 25, 69516955 (2013).CrossRefGoogle ScholarPubMed
55. Gsänger, M., Oh, J.H., Könemann, M., Höffken, H.W., Krause, A.-M., Bao, Z., and Würthner, F.: A crystal-engineered hydrogen-bonded octachloroperylenediimide with a twisted core: an n-channel organic semiconductor. Angew. Chem. 122, 752755 (2010).CrossRefGoogle Scholar
56. Oh, J.H., Suraru, S.L., Lee, W.Y., Könemann, M., Höffken, H.W., Röger, C., Schmidt, R., Chung, Y., Chen, W.C., Würthner, F., and Bao, Z.: High-performance air-stable n-type organic transistors based on core-chlorinated naphthalene tetracarboxylicdiimides. Adv. Funct. Mater. 20, 21482156 (2010).CrossRefGoogle Scholar
57. Lee, W.Y., Oh, J.H., Suraru, S.L., Chen, W.C., Würthner, F., and Bao, Z.: High-mobility air-stable solution-shear-processed n-channel organic transistors based on core-chlorinated naphthalene diimides. Adv. Funct. Mater. 21, 41734181 (2011).CrossRefGoogle Scholar
58. Yamada, H., Okujimaa, T., and Ono, N.: Organic semiconductors based on small molecules with thermally or photochemically removable groups. Chem. Commun. 44, 29572974 (2008).CrossRefGoogle Scholar
59. Li, Y., Meng, B., Tong, H., Xie, Z., and Wang, L.: A chlorinated phenazine-based donor–acceptor copolymer with enhanced photovoltaic performance. Polym. Chem. 5, 18481851 (2014).CrossRefGoogle Scholar
60. Xu, J.M., Ng, S.C., and Chan, H.S.O.: A series of thienylene/phenylene-based polymers functionalized with electron-withdrawing or -donating groups: synthesis and characterization. Macromolecules 34, 43144323 (2001).CrossRefGoogle Scholar
61. Lei, T., Dou, J.-H., Ma, Z.-J., Liu, C.-J., Wang, J.-Y., and Pei, J.: Chlorination as a useful method to modulate conjugated polymers: balanced and ambient-stable ambipolar high-performance field-effect transistors and inverters based on chlorinated isoindigo polymers. Chem. Sci. 4, 24472452 (2013).CrossRefGoogle Scholar
62. Allred, A.L.: Electronegativity values from thermochemical data. J. Inorg. Nucl. Chem. 17, 215 (1961).CrossRefGoogle Scholar
63. Tang, M.L., Oh, J.H., Reichardt, A.D., and Bao, Z.: Chlorination: a general route toward electron transport in organic semiconductors. J. Am. Chem. Soc. 131, 37333740 (2009).CrossRefGoogle ScholarPubMed
64. Letizia, J.A., Salata, M.R., Tribout, C.M., Facchetti, A., Ratner, M.A., and Marks, T.J.: n-channel polymers by design: optimizing the interplay of solubilizing substituents, crystal packing, and field-effect transistor characteristics in polymeric bithiophene-imide semiconductors. J. Am. Chem. Soc. 130, 96799694 (2008).CrossRefGoogle ScholarPubMed
65. Goto, H. and Akagi, K.: Optically active conjugated polymers prepared from achiral monomers by polycondensation in a chiral nematic solvent. Angew. Chem. Int. Ed. 44, 4322–755 (2005).CrossRefGoogle Scholar
66. Chaignon, F., Falkenström, M., Karlsson, S., Blart, E., Odobel, F., and Hammarström, L.: Very large acceleration of the photoinduced electron transfer in a Ru(bpy)3–naphthalene bisimide dyad bridged on the naphthyl core. Chem. Commun. 43, 6466 (2007).CrossRefGoogle Scholar
67. Bard, A.J. and Faulkner, L.R.: Electrochemical Methods-Fundamentals and Applications (Wiley, New York, 1984).Google Scholar
68. Zhan, X., Facchetti, A., Barlow, S., Marks, T.J., Ratner, M.A., Wasielewski, M.R., and Marder, S.R.: Rylene and related diimides for organic electronics. Adv. Mater. 23, 268284 (2011).CrossRefGoogle ScholarPubMed
69. Jones, B.A., Ahrens, M.J., Yoon, M.H., Facchetti, A., Marks, T.J., and Wasielewski, M.R.: High-mobility air-stable n-type semiconductors with processing versatility: dicyanoperylene-3, 4: 9, 10-bis (dicarboximides). Angew. Chem. 116, 65236526 (2004).CrossRefGoogle Scholar
70. Ji, W.-Y., Xia, X.-L., Ren, X.-H., Wang, F., Wang, H.-J., and Diao, K.-S.: The non-covalent bindings of CF2Cl2 with NO and SO2 . Struct. Chem. 24, 4954 (2013).CrossRefGoogle Scholar
71. Adhikari, U. and Scheiner, S.: Substituent effects on Cl···N, S···N, and P···N noncovalent bonds. J. Phys. Chem. A 116, 34873497 (2012).CrossRefGoogle ScholarPubMed
72. Chan, H.S.O., Ng, S.-C., Seowa, S.-H., and Moderscheimb, M.J.G.: Symmetrically disubstitutedPoly(bithiophene)s: influence of halogen substituents. J. Mater. Chem. 2, 11351139 (1992).CrossRefGoogle Scholar
73. Guo, X., Kim, F.S., Seger, M.J., Jenekhe, S.A., and Watson, M.D.: Naphthalene diimide-based polymer semiconductors: synthesis, structure–property correlations, and n-channel and ambipolar field-effect transistors. Chem. Mater. 24, 14341442 (2012).CrossRefGoogle Scholar
74. Li, Y., Vamvounis, G., and Holdcroft, S.: Facile functionalization of poly(3-alkylthiophene)s via electrophilic substitution. Macromolecules 34, 141143 (2001).CrossRefGoogle Scholar
75. Aradilla, D., Casanovas, J., Estrany, F., Iribarrena, J.I., and Aleman, C.: New insights into the characterization of poly(3-chlorothiophene) for electrochromic devices. Polym. Chem. 3, 436449 (2012).CrossRefGoogle Scholar
76. de Oliveira, E.F., Camilo, A. Jr., da Silva-Filho, L.C., and Lavarda, F.C.: Effect of chemical modifications on the electronic structure of poly(3-hexylthiophene). J. Polym. Sci. B: Polym. Phys. 51, 842846 (2013).CrossRefGoogle Scholar
77. Kim, Y., Hong, J., Oh, J.H., and Yang, C.: Naphthalene diimide incorporated thiophene-free copolymers with acene and heteroacene units: comparison of geometric features and electron-donating strength of Co-units. Chem. Mater. 25, 32513259 (2013).CrossRefGoogle Scholar
78. Xu, Y., Minari, T., Tsukagoshi, K., Chroboczek, J., and Ghibaudo, G.: Direct evaluation of low-field mobility and access resistance in pentacene field-effect transistors. J. Appl. Phys. 107, 114507-1114507-7 (2010).CrossRefGoogle Scholar
79. Usta, H., Risko, C., Wang, Z., Huang, H., Deliomeroglu, M.K., Zhukhovitskiy, A., Facchetti, A., and Marks, T.J.: Design, synthesis, and characterization of ladder-type molecules and polymers. Air-stable, solution-processable n-channel and ambipolar semiconductors for thin-film transistors via experiment and theory. J. Am. Chem. Soc. 131, 55865608 (2009).CrossRefGoogle ScholarPubMed
80. Park, J.H., Lee, H.S., Lee, J., Lee, K., Lee, G., Yoon, K.H., Sung, M.M., and Im, S.: Stability-improved organic n-channel thin-film transistors with nm-thin hydrophobic polymer-coated high-k dielectrics. Phys. Chem. Chem. Phys. 14, 1420214206 (2012).CrossRefGoogle ScholarPubMed
81. Hwang, D.K., Fuentes-Hernandez, C., Fenoll, M., Yun, M., Park, J., Shim, J.W., Knauer, K.A., Dindar, A., Kim, H., Kim, Y., Kim, J., Cheun, H., Payne, M.M., Graham, S., lm, S., Anthony, J., and Kippelen, B.: Systematic reliability study of top-gate p-and n-channel organic field-effect transistors. ACS Appl. Mater. Interfaces 6, 33783386 (2014).CrossRefGoogle ScholarPubMed
82. Yun, M., Sharma, A., Fuentes-Hernandez, C., Hwang, D.K., Dindar, A., Singh, S., Choi, S., and Kippelen, B.: Stable organic field-effect transistors for continuous and non-destructive chemical and biological sensing in aqueous environment. ACS Appl. Mater. Interfaces 6, 16161622 (2014).CrossRefGoogle Scholar
83. Hwang, D.K., Fuentes-Hernandez, C., Kim, J., Potscavage, W.J., Kim, S.J., and Kippelen, B.: Top-gate organic field-effect transistors with high environmental and operational stability. Adv. Mater. 23, 12931298 (2011).CrossRefGoogle ScholarPubMed
84. Cheng, X., Caironi, M., Noh, Y.Y., Wang, J., Newman, C., Yan, H., Facchetti, A., and Sirringhaus, H.: Air stable cross-linked Cytop ultrathin gate dielectric for high yield low-voltage top-gate organic field-effect transistors. Chem. Mater. 22, 15591566 (2010).CrossRefGoogle Scholar
85. Khim, D., Baeg, K.-J., Kim, J., Kang, M., Lee, S.-H., Chen, Z., Facchetti, A., Kim, D.-Y., and Noh, Y.-Y.: High performance and stable N-channel organic field-effect transistors by patterned solvent-vapor annealing. ACS Appl. Mater. Interfaces 5, 1074510752 (2013).CrossRefGoogle ScholarPubMed
Supplementary material: File

Ryu supplementary material

Ryu supplementary material 1

Download Ryu supplementary material(File)
File 1.1 MB