Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-13T16:41:17.272Z Has data issue: false hasContentIssue false

Molecular valves for colloidal growth of nanocrystal quantum dots: effect of precursor decomposition and intermediate species

Published online by Cambridge University Press:  16 July 2018

Sungjun Koh
Affiliation:
Department of Chemical and Biomolecular Engineering, KAIST Institute for the Nanocentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
Doh C. Lee*
Affiliation:
Department of Chemical and Biomolecular Engineering, KAIST Institute for the Nanocentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
*
Address all correspondence to Doh C. Lee at dclee@kaist.edu
Get access

Abstract

The ability to manipulate matter on the nanometer length scale is an important scientific goal, and the progress in the field of colloidal nanocrystal (NC) growth in the past decades has opened avenue for controlled synthesis of nanoscale materials with many unique physical properties that could enhance existing technologies or give rise to entirely new technologic applications. At the center of the progress is ever-increasing understanding on molecular interactions within colloidal synthesis, in which nucleation and growth each plays a critical role in the control of size, shape, morphology, and structure of NCs. Semiconductor NCs in quantum confinement regime, referred to as quantum dots (QDs), highlight the importance of such control over geometric parameters, since QDs exhibit size- and shape-dependent optical properties. In this paper, we demonstrate important aspects that govern QDs growth in the context of (i) precursor conversion chemistry, and (ii) intermediate species including molecular complex and clusters. Advances in understanding the growth chemistry of QDs have proved the significance of how precursors decompose and produce intermediate species. We review recent progress in regards to the synthetic chemistry of colloidal QDs and discuss our perspective on challenges and promises in the controlled large-scale synthesis of QDs.

Type
Prospective Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Alivisatos, A.P.: Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933 (1996).Google Scholar
2.Alivisatos, A.P.: Perspectives on the physical chemistry of semiconductor nanocrystals. J. Phys. Chem. 100, 13226 (1996).Google Scholar
3.Owen, J. and Brus, L.: Chemical synthesis and luminescence applications of colloidal semiconductor quantum dots. J. Am. Chem. Soc. 139, 10939 (2017).Google Scholar
4.Talapin, D.V., Lee, J.-S., Kovalenko, M.V., and Shevchenko, E.V.: Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem. Rev. 110, 389 (2009).Google Scholar
5.Bruchez, M., Moronne, M., Gin, P., Weiss, S., and Alivisatos, A.P.: Semiconductor nanocrystals as fluorescent biological labels. Science 281, 2013 (1998).Google Scholar
6.Kairdolf, B.A., Smith, A.M., Stokes, T.H., Wang, M.D., Young, A.N., and Nie, S.: Semiconductor quantum dots for bioimaging and biodiagnostic applications. Annu. Rev. Anal. Chem. 6, 143 (2013).Google Scholar
7.McDonald, S.A., Konstantatos, G., Zhang, S., Cyr, P.W., Klem, E.J., Levina, L., and Sargent, E.H.: Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nat. Mater. 4, 138 (2005).Google Scholar
8.Koleilat, G.I., Levina, L., Shukla, H., Myrskog, S.H., Hinds, S., Pattantyus-Abraham, A.G., and Sargent, E.H.: Efficient, stable infrared photovoltaics based on solution-cast colloidal quantum dots. ACS nano 2, 833 (2008).Google Scholar
9.Kamat, P.V.: Quantum dot solar cells. Semiconductor nanocrystals as light harvesters. J. Phys. Chem. C 112, 18737 (2008).Google Scholar
10.Truong, N.T.N., Hoang, H.H.T., Trinh, T.K., Pham, V.T.H., Smith, R.P., and Park, C.: Effect of post-synthesis annealing on properties of SnS nanospheres and its solar cell performance. Korean J. Chem. Eng. 34, 1208 (2017).Google Scholar
11.Kang, Z., Tsang, C.H.A., Wong, N.-B., Zhang, Z., and Lee, S.-T.: Silicon quantum dots: a general photocatalyst for reduction, decomposition, and selective oxidation reactions. J. Am. Chem. Soc. 129, 12090 (2007).Google Scholar
12.Harris, C. and Kamat, P.V.: Photocatalysis with CdSe nanoparticles in confined media: mapping charge transfer events in the subpicosecond to second timescales. ACS Nano 3, 682 (2009).Google Scholar
13.Kim, W.D., Kim, J.H., Lee, S., Woo, J.Y., Lee, K., Chae, W.S., Jeong, S., Bae, W.K., McGuire, J.A., Moon, J.H., Jeong, M.S., and Lee, D.C.: Role of surface states in photocatalysis: study of chlorine-passivated CdSe nanocrystals for photocatalytic hydrogen generation. Chem. Mater. 28, 962 (2016).Google Scholar
14.Sung, Y., Lim, J., Koh, J.H., Min, B.K., Pyun, J., and Char, K.: Arm length dependency of Pt-decorated CdSe tetrapods on the performance of photocatalytic hydrogen generation. Korean J. Chem. Eng. 33, 2287 (2016).Google Scholar
15.Shirasaki, Y., Supran, G.J., Bawendi, M.G., and Bulović, V.: Emergence of colloidal quantum-dot light-emitting technologies. Nat. Photonics 7, 13 (2013).Google Scholar
16.Anikeeva, P.O., Halpert, J.E., Bawendi, M.G., and Bulovic, V.: Quantum dot light-emitting devices with electroluminescence tunable over the entire visible spectrum. Nano Lett. 9, 2532 (2009).Google Scholar
17.Brus, L.: Zero-dimensional “excitons” in semiconductor clusters. IEEE J. Quantum Electron. 22, 1909 (1986).Google Scholar
18.Rossetti, R., Ellison, J., Gibson, J., and Brus, L.E.: Size effects in the excited electronic states of small colloidal CdS crystallites. J. Chem. Phys. 80, 4464 (1984).Google Scholar
19.Lee, Y., Kim, J., Koo, J.H., Kim, T.H., and Kim, D.H.: Nanomaterials for bioelectronics and integrated medical systems. Korean J. Chem. Eng. 35, 1 (2018).Google Scholar
20.Murray, C., Norris, D.J., and Bawendi, M.G.: Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 115, 8706 (1993).Google Scholar
21.Reiss, P., Protiere, M., and Li, L.: Core/shell semiconductor nanocrystals. Small 5, 154 (2009).Google Scholar
22.Jeong, B.G., Park, Y.S., Change, J.H., Cho, I., Kim, J.K., Kim, H., Char, K., Cho, J., Klimov, V.I., Park, P., Lee, D.C., and Bae, W.K.: Colloidal spherical quantum wells with near-unity photoluminescence quantum yield and suppressed blinking. ACS Nano 10, 9297 (2016).Google Scholar
23.Peng, X., Manna, L., Yang, W., Wickham, J., Scher, E., Kadavanich, A., and Alivisatos, A.P.: Shape control of CdSe nanocrystals. Nature 404, 59 (2000).Google Scholar
24.Ithurria, S., Tessier, M.D., Mahler, B., Lobo, R.P.S.M., Dubertret, B., and Efros, A.L.: Colloidal nanoplatelets with two-dimensional electronic structure. Nat. Mater. 10, 936 (2011).Google Scholar
25.Yoon, D.E., Kim, W.D., Kim, D., Lee, D., Koh, S., Bae, W.K., and Lee, D.C.: Origin of shape-dependent fluorescence polarization from CdSe nanoplatelets. J. Phys. Chem. C 121, 24837 (2017).Google Scholar
26.Seo, S.K., Heo, H., Lim, J., and Char, K.: Scattering model for tetrapods with cylindrical arms. Korean J. Chem. Eng. 34, 1192 (2017).Google Scholar
27.Lee, D.C., Hanrath, T., and Korgel, B.A.: The role of precursor-decomposition kinetics in silicon-nanowire synthesis in organic solvents. Angew. Chem. Int. Ed. 44, 3573 (2005).Google Scholar
28.Tamang, S., Lincheneau, C., Hermans, Y., Jeong, S., and Reiss, P.: Chemistry of InP nanocrystal syntheses. Chem. Mater. 28, 2491 (2016).Google Scholar
29.Aldakov, D., Lefrançois, A., and Reiss, P.: Ternary and quaternary metal chalcogenide nanocrystals: synthesis, properties and applications. J. Mater. Chem. C 1, 3756 (2013).Google Scholar
30.Gensch, C., Baron, Y., and Blepp, M.: Assistance to the Commission on Technological Socio-Economic and Cost-Benefit Assessment Related to Exemptions from the Substance Restrictions in Electrical and Electronic Equipment: Pack 10 Final Report. Oeko-Institut e.V., Institute for Applied Ecology (2016).Google Scholar
31.Peng, Z.A. and Peng, X.: Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J. Am. Chem. Soc. 123, 183 (2001).Google Scholar
32.Kortan, A., Hull, R., Opila, R.L., Bawendi, M.G., Steigerwald, M.L., Carroll, P.J., and Brus, L.E.: Nucleation and growth of cadmium selendie on zinc sulfide quantum crystallite seeds, and vice versa, in inverse micelle media. J. Am. Chem. Soc. 112, 1327 (1990).Google Scholar
33.Wells, R.L., Aubuchon, S.R., Kher, S.S., Lube, M.S., and White, P.S.: Synthesis of nanocrystalline indium arsenide and indium phosphide from indium (III) halides and tris(trimethylsilyl)pnicogens. Synthesis, characterization, and decomposition behavior of I3In P(SiMe3)3. Chem. Mater. 7, 793 (1995).Google Scholar
34.Guzelian, A., Katari, J.E.B., Kadavanich, A.V., Banin, U., Hamad, K., Juban, E., Alivisatos, A.P., Wolters, R.H., Arnold, C.C., and Heath, J.R.: Synthesis of size-selected, surface-passivated InP nanocrystals. J. Phys. Chem. 100, 7212 (1996).Google Scholar
35.Micic, O., Sprague, J.R., Curtis, C.J., Jones, K.M., Machol, J.L., Nozik, A.J., Giessen, H., Fluegel, B., Mohs, G., and Peyghambarian, N.: Synthesis and characterization of InP, GaP, and GaInP2 quantum dots. J. Phys. Chem. 99, 7754 (1995).Google Scholar
36.Battaglia, D. and Peng, X.: Formation of high quality InP and InAs nanocrystals in a noncoordinating solvent. Nano Lett. 2, 1027 (2002).Google Scholar
37.Allen, P.M., Walker, B.J., and Bawendi, M.G.: Mechanistic insights into the formation of InP quantum dots. Angew. Chem. Int. Ed. 49, 760 (2010).Google Scholar
38.Vo, D.Q., Dung, D.D., Cho, S., and Kim, S.: A simple synthesis of Ag2+xSe nanoparticles and their thin films for electronic device applications. Korean J. Chem. Eng. 33, 305 (2016).Google Scholar
39.van Embden, J., Chesman, A.S., and Jasieniak, J.J.: The heat-up synthesis of colloidal nanocrystals. Chem. Mater. 27, 2246 (2015).Google Scholar
40.Du, H., Chen, C., Krishnan, R., Krauss, T.D., Harbold, J.M., Wise, F.W., Thomas, M.G., and Silcox, J.: Optical properties of colloidal PbSe nanocrystals. Nano Lett. 2, 1321 (2002).Google Scholar
41.Chen, O., Chen, X., Yang, Y., Lynch, J., Wu, H., Zhuang, J., and Cao, Y.C.: Synthesis of metal–selenide nanocrystals using selenium dioxide as the selenium precursor. Angew. Chem. Int. Ed. 47, 8638 (2008).Google Scholar
42.Pan, D., Wang, Q., Jiang, S., Ji, X., and An, L.: Low-temperature synthesis of oil-soluble CdSe, CdS, and CdSe/CdS core−shell nanocrystals by using various water-soluble anion precursors. J. Phys. Chem. C 111, 5661 (2007).Google Scholar
43.Campos, M.P., Hendricks, M.P., Beecher, A.N., Walravens, W., Swain, R.A., Cleveland, G.T., Hens, Z., Sfeir, M.Y., and Owen, J.S.: A library of selenourea precursors to PbSe nanocrystals with size distributions near the homogeneous limit. J. Am. Chem. Soc. 139, 2296 (2017).Google Scholar
44.Jun, S., Jang, E., and Chung, Y.: Alkyl thiols as a sulfur precursor for the preparation of monodisperse metal sulfide nanostructures. Nanotechnology 17, 4806 (2006).Google Scholar
45.Joo, J., Na, H.B., Yu, T., Yu, J.H., Kim, Y.W., Wu, F., Zhang, J.Z., and Hyeon, T.: Generalized and facile synthesis of semiconducting metal sulfide nanocrystals. J. Am. Chem. Soc. 125, 11100 (2003).Google Scholar
46.Yang, Y.A., Wu, H., Williams, K.R., and Cao, Y.C.: Synthesis of CdSe and CdTe nanocrystals without precursor injection. Angew. Chem. 117, 6870 (2005).Google Scholar
47.García-Rodríguez, R.L. and Liu, H.: Mechanistic study of the synthesis of CdSe nanocrystals: release of selenium. J. Am. Chem. Soc. 134, 1400 (2012).Google Scholar
48.Evans, C.M., Evans, M.E., and Krauss, T.D.: Mysteries of TOPSe revealed: insights into quantum dot nucleation. J. Am. Chem. Soc. 132, 10973 (2010).Google Scholar
49.Harris, D.K. and Bawendi, M.G.: Improved precursor chemistry for the synthesis of III–V quantum dots. J. Am. Chem. Soc. 134, 20211 (2012).Google Scholar
50.Joung, S., Yoon, S., Han, C.-S., Kim, Y., and Jeong, S.: Facile synthesis of uniform large-sized InP nanocrystal quantum dots using tris(tert-butyldimethylsilyl)phosphine. Nanoscale Res. Lett. 7, 93 (2012).Google Scholar
51.Gary, D.C., Glassy, B.A., and Cossairt, B.M.: Investigation of indium phosphide quantum dot nucleation and growth utilizing triarylsilylphosphine precursors. Chem. Mater. 26, 1734 (2014).Google Scholar
52.Franke, D., Harris, D.K., Xie, L., Jensen, K.F., and Bawendi, M.G.: The unexpected influence of precursor conversion rate in the synthesis of III–V quantum dots. Angew. Chem. Int. Ed. 54, 14299 (2015).Google Scholar
53.Tessier, M.D., Dupont, D., De Nolf, K., De Roo, J., and Hens, Z.: Economic and size-tunable synthesis of InP/ZnE (E = S, Se) colloidal quantum dots. Chem. Mater. 27, 4893 (2015).Google Scholar
54.Song, W.S., Lee, H.S., Lee, J.C., Jang, D.S., Choi, Y., Choi, M., and Yang, H.: Amine-derived synthetic approach to color-tunable InP/ZnS quantum dots with high fluorescent qualities. J. Nanopart. Res. 15, 1750 (2013).Google Scholar
55.Chandrasekaran, V., Tessier, M.D., Dupont, D., Geiregat, P., Hens, Z., and Brainis, E.: Nearly blinking-free, high-purity single-photon emission by colloidal InP/ZnSe quantum dots. Nano Lett. 17, 6104 (2017).Google Scholar
56.Ramasamy, P., Kim, N., Kang, Y.-S., Ramirez, O., and Lee, J.-S.: Tunable, bright, and narrow-band luminescence from colloidal indium phosphide quantum dots. Chem. Mater. 29, 6893 (2017).Google Scholar
57.Pietra, F., Kirkwood, N., Trizio, L.D., Hoekstra, A.W., Kleibergen, L., Renaud, N., Baesjou, P., Manna, L., and Houtepen, A.J.: Ga for Zn cation exchange allows for highly luminescent and photostable InZnP-based quantum dots. Chem. Mater. 29, 5192 (2017).Google Scholar
58.Buffard, A., Dreyfuss, S., Nadal, B., Heuclin, H., Xu, X., Patriarche, G., Mezailles, N., and Dubertret, B.: Mechanistic insight and optimization of InP nanocrystals synthesized with aminophosphines. Chem. Mater. 28, 5925 (2016).Google Scholar
59.Tessier, M.D., Nolf, K.D., Dupont, D., Sinnaeve, D., Roo, J.D., and Hens, Z.: Aminophosphines: a double role in the synthesis of colloidal indium phosphide quantum dots. J. Am. Chem. Soc. 138, 5923 (2016).Google Scholar
60.Grigel, V., Dupont, D., De Nolf, K., Hens, Z., and Tessier, M.D.: InAs colloidal quantum dots synthesis via aminopnictogen precursor chemistry. J. Am. Chem. Soc. 138, 13485 (2016).Google Scholar
61.Bang, E., Choi, Y., Cho, J., Suh, Y.H., Ban, H.W., Son, J.S., and Park, J.: Large-scale synthesis of highly luminescent InP@ZnS quantum dots using elemental phosphorus precursor. Chem. Mater. 29, 4236 (2017).Google Scholar
62.Panzer, R., Guhrenz, C., Haubold, D., Hubner, R., Gaponik, N., Eychmuller, A., and Weigand, J.: Versatile tri(pyrazolyl) phosphanes as phosphorus precursors for the synthesis of highly emitting InP/ZnS quantum dots. Angew. Chem. Int. Ed. 56, 14737 (2017).Google Scholar
63.Boles, M.A., Ling, D., Hyeon, T., and Talapin, D.V.: The surface science of nanocrystals. Nat. Mater. 15, 141 (2016).Google Scholar
64.Yin, Y. and Alivisatos, A.P.: Colloidal nanocrystal synthesis and the organic–inorganic interface. Nature 437, 664 (2004).Google Scholar
65.Yu, W.W. and Peng, X.: Formation of high-quality CdS and other II–VI semiconductor nanocrystals in noncoordinating solvents: tunable reactivity of monomers. Angew. Chem. Int. Ed. 41, 2368 (2002).Google Scholar
66.Gary, D.C. and Cossairt, B.M.: Role of acid in precursor conversion during InP quantum dot synthesis. Chem. Mater. 25, 2463 (2013).Google Scholar
67.Yordanov, G.G., Yoshimura, H., and Dushkin, C.D.: Fine control of the growth and optical properties of CdSe quantum dots by varying the amount of stearic acid in a liquid paraffin matrix. Colloids. Surf. A Physicochem. Eng. Asp. 322, 177 (2008).Google Scholar
68.Nakonechnyi, I., Sluydts, M., Justo, Y., Jasieniak, J., and Hens, Z.: Mechanistic insights in seeded growth synthesis of colloidal core/shell quantum dots. Chem. Mater. 29, 4719 (2017).Google Scholar
69.Puzder, A., Williamson, A.J., Zaitseva, N., and Galli, G.: The effect of organic ligand binding on the growth of CdSe nanoparticles probed by Ab initio calculations. Nano Lett. 4, 2361 (2004).Google Scholar
70.Wang, W., Banerjee, S., Jia, S., Steigerwald, M.L., and Herman, I.P.: Ligand control of growth, morphology, and capping structure of colloidal CdSe nanorods. Chem. Mater. 19, 2573 (2007).Google Scholar
71.Kim, D., Lee, Y.K., Lee, D., Kim, W.D., Bae, W.K., and Lee, D.C.: Colloidal dual-diameter and core-position-controlled core/shell cadmium chalcogenide nanorods. ACS nano 11, 12461 (2017).Google Scholar
72.Kim, J.Y., Steeves, A.H., and Kulik, H.J.: Harnessing organic ligand libraries for first-principles inorganic discovery: indium phosphide quantum dot precursor design strategies. Chem. Mater. 29, 3632 (2017).Google Scholar
73.Ryu, E., Kim, S., Jang, E., Jun, S., Jang, H., Kim, B., and Kim, S.W.: Step-wise synthesis of InP/ZnS core−shell quantum dots and the role of zinc acetate. Chem. Mater. 21, 573 (2009).Google Scholar
74.Yang, X., Zhao, D., Leck, K.S., Tan, S.T., Tang, Y.X., Zhao, J., Demir, H.V., and Sun, X.W.: Full visible range covering InP/ZnS nanocrystals with high photometric performance and their application to white quantum dot light-emitting diodes. Adv. Mater. 24, 4180 (2012).Google Scholar
75.Liu, H., Owen, J.S., and Alivisatos, A.P.: Mechanistic study of precursor evolution in colloidal group II−VI semiconductor nanocrystal synthesis. J. Am. Chem. Soc. 129, 305 (2007).Google Scholar
76.Frenette, L.C. and Krauss, T.D.: Uncovering active precursors in colloidal quantum dot synthesis. Nat. Commun. 8, 2082 (2017).Google Scholar
77.Thuy, U.T.D., Reiss, P., and Liem, N.Q.: Luminescence properties of In(Zn)P alloy core/ZnS shell quantum dots. Appl. Phys. Lett. 97, 193104 (2010).Google Scholar
78.Lim, J., Bae, W.K., Lee, D., Nam, M.K., Jung, J., Lee, C., Char, K., and Lee, S.: InP@ZnSeS, Core@Composition gradient shell quantum dots with enhanced stability. Chem. Mater. 23, 4459 (2011).Google Scholar
79.Koh, S., Eom, T., Kim, W.D., Lee, K., Lee, D., Lee, Y.K., Kim, H., Bae, W.K., and Lee, D.C.: Zinc–phosphorus complex working as an atomic valve for colloidal growth of monodisperse indium phosphide quantum dots. Chem. Mater. 29, 6346 (2017).Google Scholar
80.Ramasamy, P., Ko, K.-J., Kang, J.-W., and Lee, J.-S.: Two step “seed-mediated” synthetic approach to colloidal indium phosphide quantum dots with high-purity photo-and electroluminescence. Chem. Mater. 30, 3643 (2018).Google Scholar
81.Li, L.S., Pradhan, N., Wang, Y., and Peng, X.: High quality ZnSe and ZnS nanocrystals formed by activating zinc carboxylate precursors. Nano Lett. 4, 2261 (2004).Google Scholar
82.Xie, R., Battaglia, D., and Peng, X.: Colloidal InP nanocrystals as efficient emitters covering blue to near-infrared. J. Am. Chem. Soc. 129, 15432 (2007).Google Scholar
83.Gary, D.C., Petrone, A., Li, X., and Cossairt, B.M.: Investigating the role of amine in InP nanocrystal synthesis: destabilizing cluster intermediates by Z-type ligand displacement. Chem. Commun. 53, 161 (2017).Google Scholar
84.Yu, K.: CdSe magic-sized nuclei, magic-sized nanoclusters and regular nanocrystals: monomer effects on nucleation and growth. Adv. Mater. 24, 1123 (2012).Google Scholar
85.Kudera, S., Zanella, M., Giannini, C., Rizzo, A., Li, Y., Gigli, G., Cingolani, R., Ciccarella, G., Spahl, W., Parak, W.J., and Manna, L.: Sequential growth of magic-size CdSe nanocrystals. Adv. Mater. 19, 548 (2007).Google Scholar
86.Dagtepe, P., Chikan, V., Jasinski, J., and Leppert, V.J.: Quantized growth of CdTe quantum dots; observation of magic-sized CdTe quantum dots. J. Phys. Chem. C 111, 14977 (2007).Google Scholar
87.Evans, C.M., Guo, L., Peterson, J.J., Maccagnano-Zacher, S., and Krauss, T.D.: Ultrabright PbSe magic-sized clusters. Nano Lett. 8, 2896 (2008).Google Scholar
88.Cossairt, B.M.: Shining light on indium phosphide quantum dots: understanding the interplay among precursor conversion, nucleation, and growth. Chem. Mater. 28, 7181 (2016).Google Scholar
89.Bowers, M.J., McBride, J.R., and Rosenthal, S.J.: White-light emission from magic-sized cadmium selenide nanocrystals. J. Am. Chem. Soc. 127, 15378 (2005).Google Scholar
90.Ouyang, J., Zaman, M.B., Yan, F.J., Johnston, D., Li, G., Wu, X., Leek, D., Ratcliffe, C.I., Ripmeester, J.A., and Yu, K.: Multiple families of magic-sized CdSe nanocrystals with strong bandgap photoluminescence via noninjection one-pot syntheses. J. Phys. Chem. C 112, 13805 (2008).Google Scholar
91.Li, J., Wang, H., Lin, L., Fang, Q., and Peng, X.: Quantitative identification of basic growth channels for formation of monodisperse nanocrystals. J. Am. Chem. Soc. 140, 5474 (2018).Google Scholar
92.Jiang, Z.-J. and Kelley, D.F.: Role of magic-sized clusters in the synthesis of CdSe nanorods. ACS Nano 4, 1561 (2010).Google Scholar
93.Wang, Y., Zhang, Y., Wang, F., Giblin, D.E., Hoy, J., Rohrs, H.W., Loomis, R.A., and Buhro, W.E.: The magic-size nanocluster (CdSe)34 as a low-temperature nucleant for cadmium selenide nanocrystals; room-temperature growth of crystalline quantum platelets. Chem. Mater. 26, 2233 (2014).Google Scholar
94.Gutsev, L.G., Ramachandran, B.R., and Gutsev, G.L.: Pathways of growth of CdSe nanocrystals from nucleant (CdSe)34 clusters. J. Phys. Chem. C 122, 3168 (2018).Google Scholar
95.Liu, Y., Zhang, B., Fan, H., Rowell, N., Willis, M., Zheng, X., Che, R., Han, S., and Yu, K.: Colloidal CdSe 0-dimension nanocrystals and their self-assembled 2-dimension structures. Chem. Mater. 30, 1575 (2018).Google Scholar
96.Gary, D.C., Terban, M.W., Billinge, S.J., and Cossairt, B.M.: Two-step nucleation and growth of InP quantum dots via magic-sized cluster intermediates. Chem. Mater. 27, 1432 (2015).Google Scholar
97.Xie, L., Shen, Y., Franke, D., Sebastian, V., Bawendi, M.G., and Jensen, K.F.: Characterization of indium phosphide quantum dot growth intermediates using MALDI-TOF mass spectrometry. J. Am. Chem. Soc. 138, 13469 (2016).Google Scholar
98.Woo, J.Y., Lee, S., Lee, S., Kim, W.D., Lee, K., Kim, K., An, H.J., Lee, D.C., and Jeong, S.: Air-stable PbSe nanocrystals passivated by phosphonic acids. J. Am. Chem. Soc. 138, 876 (2016).Google Scholar
99.Koh, W.K., Park, S., and Ham, Y.: Phosphonic acid stabilized colloidal CsPbX3 (X = Br, I) perovskite nanocrystals and their surface chemistry. ChemistrySelect 1, 3479 (2016).Google Scholar
100.Tamang, S., Lee, S., Choi, H., and Jeong, S.: Tuning size and size distribution of colloidal InAs nanocrystals via continuous supply of prenucleation clusters on nanocrystal seeds. Chem. Mater. 28, 8119 (2016).Google Scholar
101.Stein, J.L., Steimle, M.I., Terban, M.W., Petrone, A., Billinge, S.J., Li, X., and Cossairt, B.M.: Cation exchange induced transformation of InP magic-sized clusters. Chem. Mater. 29, 7984 (2017).Google Scholar
102.Ning, J. and Banin, U.: Magic size InP and InAs clusters: synthesis, characterization and shell growth. Chem. Commun. 53, 2626 (2017).Google Scholar
103.De Trizio, L. and Manna, L.: Forging colloidal nanostructures via cation exchange reactions. Chem. Rev. 116, 10852 (2016).Google Scholar
104.Wark, S.E., Hsia, C.-H., and Son, D.H.: Effects of ion solvation and volume change of reaction on the equilibrium and morphology in cation-exchange reaction of nanocrystals. J. Am. Chem. Soc. 130, 9550 (2008).Google Scholar
105.Lee, D., Kim, W.D., Lee, S., Bae, W.K., Lee, S., and Lee, D.C.: Direct Cd-to-Pb exchange of CdSe nanorods into PbSe/CdSe axial heterojunction nanorods. Chem. Mater. 27, 5295 (2015).Google Scholar