Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-14T10:37:01.305Z Has data issue: false hasContentIssue false

A model revealing grain boundary arrangement-dominated fatigue cracking behavior in nanoscale metallic multilayers

Published online by Cambridge University Press:  07 June 2019

Fei Liang
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, P. R. China School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, P. R. China
Dong Wang
Affiliation:
Institute of Materials Engineering and Institute of Micro- and Nanotechnologies MacroNano®, TU Ilmenau, Gustav-Kirchhoff-Str. 5, 98693 Ilmenau, Germany
Xi Li
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, P. R. China
Xue-Mei Luo
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, P. R. China
Peter Schaaf
Affiliation:
Institute of Materials Engineering and Institute of Micro- and Nanotechnologies MacroNano®, TU Ilmenau, Gustav-Kirchhoff-Str. 5, 98693 Ilmenau, Germany
Guang-Ping Zhang*
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, P. R. China
*
Address all correspondence to Guang-Ping Zhang at gpzhang@imr.ac.cn
Get access

Abstract

In order to reveal the quantitative relationship between fatigue crack deflection path and cross-sectional grain boundary (GB) arrangement of metallic nanolayered composites (NLCs), a stochastic model was established based on the interface-dominant fatigue damage for the ultrafine-scale NLCs. The model indicates that the crack deflection length decreases with decreasing GB arrangement deviation and grain size of constituent layers. The observation and quantitative analysis of fatigue cracking behavior of the Cu/W multilayers with a layer thickness of 5 and 20 nm was conducted to verify the model.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Zhang, J.Y., Liu, G., and Sun, J.: Self-toughening crystalline Cu/amorphous Cu–Zr nanolaminates: deformation-induced devitrification. Acta Mater. 66, 22 (2014).Google Scholar
2.Mara, N.A., Bhattacharyya, D., Dickerson, P., Hoagland, R.G., and Misra, A.: Deformability of ultrahigh strength 5 nm Cu∕Nb nanolayered composites. Appl. Phys. Lett. 92, 231901 (2008).Google Scholar
3.Haseeb, A.S.M.A., Celis, J.P., and Roos, J.R.: Fretting wear of metallic multilayer films. Thin Solid Films 444, 199 (2003).Google Scholar
4.Zhou, Q., Zhang, S., Wei, X., Wang, F., Huang, P., and Xu, K.: Improving the crack resistance and fracture toughness of Cu/Ru multilayer thin films via tailoring the individual layer thickness. J. Alloys Compd. 742, 45 (2018).Google Scholar
5.Zhang, C., Feng, K., Li, Z., Lu, F., Huang, J., Wu, Y., and Chu, P.K.: Enhancement of high-temperature strength of Ni-based films by addition of nano-multilayers and incorporation of W. Acta Mater. 133, 55 (2017).Google Scholar
6.Li, Y.P., Tan, J., and Zhang, G.P.: Interface instability within shear bands in nanoscale Au/Cu multilayers. Scripta Mater. 59, 1226 (2008).Google Scholar
7.Zhang, J.Y., Lei, S., Liu, Y., Niu, J.J., Chen, Y., Liu, G., Zhang, X., and Sun, J.: Length scale-dependent deformation behavior of nanolayered Cu/Zr micropillars. Acta Mater. 60, 1610 (2012).Google Scholar
8.Zhu, X.F., Li, Y.P., Zhang, G.P., Tan, J., and Liu, Y.: Understanding nanoscale damage at a crack tip of multilayered metallic composites. Appl. Phys. Lett. 92, 161905 (2008).Google Scholar
9.Zhang, J.Y., Zhang, X., Liu, G., Zhang, G.J., and Sun, J.: Dominant factor controlling the fracture mode in nanostructured Cu/Cr multilayer films. Mater. Sci. Eng., A 528, 2982 (2011).Google Scholar
10.Evans, A.G., Rühle, M., Dalgleish, B.J., and Charalambides, P.G.: The fracture energy of bimaterial interfaces. Mater. Sci. Eng., A 126, 53 (1990).Google Scholar
11.Foecke, T. and Kramer, D.E.: In situ TEM observations of fracture in nanolaminated metallic thin films. Int. J. Fract. 119, 351 (2003).Google Scholar
12.Dang, C., Yao, Y., Olugbade, T., Li, J., and Wang, L.: Effect of multi-interfacial structure on fracture resistance of composite TiSiN/Ag/TiSiN multilayer coating. Thin Solid Films 653, 107 (2018).Google Scholar
13.Verma, N. and Jayaram, V.: Role of interface curvature on stress distribution under indentation for ZrN/Zr multilayer coating. Thin Solid Films 571, 283 (2014).Google Scholar
14.Wang, D., Volkert, C.A., and Kraft, O.: Effect of length scale on fatigue life and damage formation in thin Cu films. Mater. Sci. Eng., A 493, 267 (2008).Google Scholar
15.Zhang, G.P., Volkert, C.A., Schwaiger, R., Wellner, P., Arzt, E., and Kraft, O.: Length-scale-controlled fatigue mechanisms in thin copper films. Acta Mater. 54, 3127 (2006).Google Scholar
16.Zhu, X.F. and Zhang, G.P.: Tensile and fatigue properties of ultrafine Cu–Ni multilayers. J. Phys. D: Appl. Phys. 42, 055411 (2009).Google Scholar
17.Anwar Ali, H.P., Radchenko, I., Li, N., and Budiman, A.: The roles of interfaces and other microstructural features in Cu/Nb nanolayers as revealed by in situ beam bending experiments inside an scanning electron microscope (SEM). Mater. Sci. Eng., A 738, 253 (2018).Google Scholar
18.Watanabe, T. and Tsurekawa, S.: Toughening of brittle materials by grain boundary engineering. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 387, 447 (2004).Google Scholar
19.Zhao, Y. and Zhou, J.: Tungsten content and grain boundary misorientation angle effect on crack blunting in nanocrystalline Ni-W alloy. J. Nanopart. Res. 19, 406 (2017).Google Scholar
20.Guo, W., Meng, Y., Zhang, X., Bedekar, V., Bei, H., Hyde, S., Guo, Q., Thompson, G.B., Shivpuri, R., Zuo, J.-m, and Poplawsky, J.D.: Extremely hard amorphous-crystalline hybrid steel surface produced by deformation induced cementite amorphization. Acta Mater. 152, 107 (2018).Google Scholar
21.Daniel, R., Meindlhumer, M., Baumegger, W., Zalesak, J., Sartory, B., Burghammer, M., Mitterer, C., and Keckes, J.: Grain boundary design of thin films: using tilted brittle interfaces for multiple crack deflection toughening. Acta Mater. 122, 130 (2017).Google Scholar
22.Bokov, A., Zhang, S., Feng, L., Dillon, S.J., Faller, R., and Castro, R.H.R.: Energetic design of grain boundary networks for toughening of nanocrystalline oxides. J. Eur. Ceram. Soc. 38, 4260 (2018).Google Scholar
23.Daniel, R., Meindlhumer, M., Zalesak, J., Sartory, B., Zeilinger, A., Mitterer, C., and Keckes, J.: Fracture toughness enhancement of brittle nanostructured materials by spatial heterogeneity: a micromechanical proof for CrN/Cr and TiN/SiOx multilayers. Mater. Design 104, 227 (2016).Google Scholar
24.Meyers, M.A., Mishra, A., and Benson, D.J.: Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51, 427 (2006).Google Scholar
25.Padilla, H.A. and Boyce, B.L.: A review of fatigue behavior in nanocrystalline metals. Exp. Mech. 50, 5 (2010).Google Scholar
26.Chen, Y., Liu, Y., Sun, C., Yu, K.Y., Song, M., Wang, H., and Zhang, X.: Microstructure and strengthening mechanisms in Cu/Fe multilayers. Acta Mater. 60, 6312 (2012).Google Scholar
27.Dai, C.Y., Zhu, X.F., and Zhang, G.P.: Tensile and fatigue properties of free-standing Cu foils. J. Mater. Sci. Technol. 25, 721 (2009).Google Scholar
28.Zheng, S.X., Luo, X.M., Wang, D., and Zhang, G.P.: A novel evaluation strategy for fatigue reliability of flexible nanoscale films. Mater. Res. Express 5, 8 (2018).Google Scholar
29.Lopes, C., Vieira, M., Borges, J., Fernandes, J., Rodrigues, M.S., Alves, E., Barradas, N.P., Apreutesei, M., Steyer, P., Tavares, C.J., Cunha, L., and Vaz, F.: Multifunctional Ti-Me (Me = Al, Cu) thin film systems for biomedical sensing devices. Vacuum 122, 353 (2015).Google Scholar
30.Bull, S.J. and Jones, A.M.: Multilayer coatings for improved performance. Surf. Coat. Technol. 78, 173 (1996).Google Scholar