Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-13T09:13:54.212Z Has data issue: false hasContentIssue false

Mechanical properties of APbX3 (A = Cs or CH3NH3; X = I or Br) perovskite single crystals

Published online by Cambridge University Press:  06 October 2015

Yevgeny Rakita
Affiliation:
Materials and Interfaces Department, Weizmann Institute of Science, Rehovot 76100, Israel
Sidney R. Cohen*
Affiliation:
Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
Nir Klein Kedem
Affiliation:
Materials and Interfaces Department, Weizmann Institute of Science, Rehovot 76100, Israel
Gary Hodes
Affiliation:
Materials and Interfaces Department, Weizmann Institute of Science, Rehovot 76100, Israel
David Cahen*
Affiliation:
Materials and Interfaces Department, Weizmann Institute of Science, Rehovot 76100, Israel
*
Address all correspondence to Sidney R. Cohen atsidney.cohen@weizmann.ac.iland David Cahen atdavid.cahen@weizmann.ac.il
Address all correspondence to Sidney R. Cohen atsidney.cohen@weizmann.ac.iland David Cahen atdavid.cahen@weizmann.ac.il
Get access

Abstract

The remarkable optoelectronic and especially photovoltaic performance of hybrid organic–inorganic perovskite (HOIP) materials drives efforts to connect materials properties to this performance. From nano-indentation experiments on solution-grown single crystals we obtain elastic modulus and nano-hardness values of APbX3 (A = Cs, CH3NH3; X = I, Br). The Young's moduli are ~14, 19.5, and 16 GPa, for CH3NH3PbI3, CH3NH3PbBr3, and CsPbBr3, respectively, lending credence to theoretically calculated values. We discuss the possible relevance of our results to suggested “self-healing”, ion diffusion, and ease of manufacturing. Using our results, together with literature data on elastic moduli, we classified HOIPs amongst the relevant material groups, based on their elastomechanical properties.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kulbak, M., Cahen, D., and Hodes, G.: How important is the organic part of lead halide perovskite photovoltaic cells? efficient CsPbBr3 cells. J. Phys. Chem. Lett. 6, 24522456 (2015).CrossRefGoogle ScholarPubMed
2. Green, M.A., Emery, K., Hishikawa, Y., Warta, W., and Dunlop, E.D.: Solar cell efficiency tables (version 44). Prog. Photovolt. Res. Appl. 22, 701710 (2014).CrossRefGoogle Scholar
3. Yin, W.-J., Shi, T., and Yan, Y.: Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl. Phys. Lett. 104, 063903 (2014).Google Scholar
4. Shi, D., Adinolfi, V., Comin, R., Yuan, M., Alarousu, E., Buin, A., Chen, Y., Hoogland, S., Rothenberger, A., Katsiev, K., Losovyj, Y., Zhang, X., Dowben, P.A., Mohammed, O.F., Sargent, E.H., and Bakr, O.M.: Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347, 519522 (2015).Google Scholar
5. Tress, W., Marinova, N., Moehl, T., Zakeeruddin, S.M., Nazeeruddin, M.K., and Grätzel, M.: Understanding the rate-dependent J–V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: the role of a compensated electric field. Energy Environ. Sci. 8, 9951004 (2015).Google Scholar
6. Yang, T.-Y., Gregori, G., Pellet, N., Grätzel, M., and Maier, J.: The significance of ion conduction in a hybrid organic–inorganic lead-iodide-based perovskite photosensitizer. Angew. Chem. 127, 80168021 (2015).Google Scholar
7. Eames, C., Frost, J.M., Barnes, P.R.F., O'Regan, B.C., Walsh, A., and Islam, M.S.: Ionic transport in hybrid lead iodide perovskite solar cells. Nat. Commun. 6, (2015).CrossRefGoogle ScholarPubMed
8. Xiao, Z., Yuan, Y., Shao, Y., Wang, Q., Dong, Q., Bi, C., Sharma, P., Gruverman, A., and Huang, J.: Giant switchable photovoltaic effect in organometal trihalide perovskite devices. Nat. Mater. 14, 193198 (2015).CrossRefGoogle ScholarPubMed
9. Beilsten-Edmands, J., Eperon, G.E., Johnson, R.D., Snaith, H.J., and Radaelli, P.G.: Non-ferroelectric nature of the conductance hysteresis in CH3NH3PbI3 perovskite-based photovoltaic devices. Appl. Phys. Lett. 106, 173502 (2015).Google Scholar
10. Kawamura, Y., Mashiyama, H., and Hasebe, K.: Structural study on cubic–tetragonal transition of CH3NH3PbI3 . J. Phys. Soc. Jpn. 71, 16941697 (2002).CrossRefGoogle Scholar
11. Mashiyama, H., Kawamura, Y., Magome, E., and Kubota, Y.: Displacive character of the cubic-tetragonal transition in CH3NH3PbX 3 . J. Korean Phys. Soc. 42, S1026S1029 (2003).Google Scholar
12. Oliver, W.C. and Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 15641583 (1992).Google Scholar
13. Dong, Q., Fang, Y., Shao, Y., Mulligan, P., Qiu, J., Cao, L., and Huang, J.: Electron-hole diffusion lengths >175 μm in solution grown CH3NH3PbI3 single crystals. Science 347, 967970 (2015).Google Scholar
14. Dang, Y., Liu, Y., Sun, Y., Yuan, D., Liu, X., Lu, W., Liu, G., Xia, H., and Tao, X.: Bulk crystal growth of hybrid perovskite material CH3NH3PbI3 . CrystEngComm 17, 665670 (2014).CrossRefGoogle Scholar
15. Tidhar, Y., Edri, E., Weissman, H., Zohar, D., Hodes, G., Cahen, D., Rybtchinski, B., and Kirmayer, S.: Crystallization of methyl ammonium lead halide perovskites: implications for photovoltaic applications. J. Am. Chem. Soc. 136, 1324913256 (2014).CrossRefGoogle ScholarPubMed
16. Zhao, P., Xu, J., Dong, X., Wang, L., Ren, W., Bian, L., and Chang, A.: Large-size CH3NH3PbBr3 single crystal: growth and in situ characterization of the photophysics properties. J. Phys. Chem. Lett. 6, 26222628 (2015). doi: 10.1021/acs.jpclett.5b01017.CrossRefGoogle ScholarPubMed
17. Stoumpos, C.C., Malliakas, C.D., Peters, J.A., Liu, Z., Sebastian, M., Im, J., Chasapis, T.C., Wibowo, A.C., Chung, D.Y., Freeman, A.J., Wessels, B.W., and Kanatzidis, M.G.: Crystal growth of the perovskite semiconductor CsPbBr3: a new material for high-energy radiation detection. Cryst. Growth Des. 13, 27222727 (2013).Google Scholar
18. Li, X. and Bhushan, B.: A review of nanoindentation continuous stiffness measurement technique and its applications. Mater. Charact. 48, 1136 (2002).Google Scholar
19. Sun, S., Fang, Y., Kieslich, G., White, T.J., and Cheetham, A.K.: Mechanical properties of organic–inorganic halide perovskites, CH3NH3PbX3 (X = I, Br and Cl), by nanoindentation. J. Mater. Chem. A 3, 1845018455 (2015). doi: 10.1039/C5TA03331D.Google Scholar
20. Swainson, I.P., Tucker, M.G., Wilson, D.J., Winkler, B., and Milman, V.: Pressure response of an organic−inorganic perovskite: methylammonium lead bromide. Chem. Mater. 19, 24012405 (2007).Google Scholar
21. Hirotsu, S., Suzuki, T., and Sawada, S.: Ultrasonic velocity around the successive phase transition points of CsPbBr3 . J. Phys. Soc. Jpn. 43, 575 (1977).CrossRefGoogle Scholar
22. Rodová, M., Brožek, J., Knížek, K., and Nitsch, K.: Phase transitions in ternary caesium lead bromide. J. Therm. Anal. Calorim. 71, 667673 (2003).Google Scholar
23. Ashby, M.F.: Materials Selection in Mechanical Design (Elsevier/Butterworth–Heinemann, Amsterdam, 2011).Google Scholar
24. Egger, D.A. and Kronik, L.: Role of dispersive interactions in determining structural properties of organic–inorganic halide perovskites: insights from first-principles calculations. J. Phys. Chem. Lett. 5, 27282733 (2014).CrossRefGoogle ScholarPubMed
25. Feng, J.: Mechanical properties of hybrid organic-inorganic CH3NH3BX3 (B = Sn, Pb; X = Br, I) perovskites for solar cell absorbers. APL Mater. 2, 081801 (2014).CrossRefGoogle Scholar
26. Murtaza, G. and Ahmad, I.: First principle study of the structural and optoelectronic properties of cubic perovskites CsPbM3 (M=Cl, Br, I). Phys. B: Condens. Matter 406, 32223229 (2011).Google Scholar
27. Luo, Y.-R.: Comprehensive Handbook of Chemical Bond Energies (CRC Press, Boca Raton, FL, 2007).Google Scholar
28. Veiga, W. and Lepienski, C.M.: Nanomechanical properties of lead iodide (PbI2) layered crystals. Mater. Sci. Eng. A 335, 613 (2002).CrossRefGoogle Scholar
29. Weber, M.J.: CRC Handbook of Laser Science and Technology Supplement 2: Optical Materials (CRC Press, Boca Raton, FL, 1994).Google Scholar
30. Bhadram, V.S., Swain, D., Dhanya, R., Polentarutti, M., Sundaresan, A., and Narayana, C.: Effect of pressure on octahedral distortions in RCrO3 (R = Lu, Tb, Gd, Eu, Sm): the role of R-ion size and its implications. Mater. Res. Express 1, 026111 (2014).Google Scholar
31. Verma, A.S. and Kumar, A.: Bulk modulus of cubic perovskites. J. Alloys Compd. 541, 210214 (2012).CrossRefGoogle Scholar
32. Pisoni, A., Jaćimović, J., Barišić, O.S., Spina, M., Gaál, R., Forró, L., and Horváth, E.: Ultra-low thermal conductivity in organic–inorganic hybrid perovskite CH3NH3PbI3 . J. Phys. Chem. Lett. 5, 24882492 (2014).Google Scholar
33. Nakamura, K., Yamada, S., and Ohnuma, T.: Energetic stability and thermoelectric property of alkali-metal-encapsulated type-I silicon-clathrate from first-principles calculation. Mater. Trans. 54, 276285 (2013).Google Scholar
34. Sui, F., He, H., Bobev, S., Zhao, J., Osterloh, F.E., and Kauzlarich, S.M.: Synthesis, structure, thermoelectric properties, and band gaps of alkali metal containing type I clathrates: A8Ga8Si38 (A = K, Rb, Cs) and K8Al8Si38 . Chem. Mater. 27, 28122820 (2015).Google Scholar
35. Karttunen, A.J., Härkönen, V.J., Linnolahti, M., and Pakkanen, T.A.: Mechanical properties and low elastic anisotropy of semiconducting group 14 Clathrate frameworks. J. Phys. Chem. C 115, 1992519930 (2011).CrossRefGoogle Scholar
36. Azpiroz, J.M., Mosconi, E., Bisquert, J., and Angelis, F.D.: Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation. Energy Environ. Sci. 8, 21182127 (2015).Google Scholar
37. Egger, D.A., Kronik, L., and Rappe, A.M.: Theory of hydrogen migration in organic–inorganic halide perovskites. Angew. Chem. Int. Ed. 54, 15 (2015). doi: 10.1002/anie.201502544.Google Scholar
38. Stoumpos, C.C., Malliakas, C.D., and Kanatzidis, M.G.: Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52, 90199038 (2013).Google Scholar
39. Lee, Y., Mitzi, D.B., Barnes, P.W., and Vogt, T.: Pressure-induced phase transitions and templating effect in three-dimensional organic–inorganic hybrid perovskites. Phys. Rev. B 68, 020103 (2003).Google Scholar
40. Sears, W.M., Klein, M.L., and Morrison, J.A.: Polytypism and the vibrational properties of PbI2 . Phys. Rev. B 19, 23052313 (1979).Google Scholar
41. Nitsch, K. and Rodová, M.: Thermomechanical measurements of lead halide single crystals. Phys. Status Solidi B 234, 701709 (2002).3.0.CO;2-1>CrossRefGoogle Scholar
42. Ni, J.E., Case, E.D., Khabir, K.N., Stewart, R.C., Wu, C.-I., Hogan, T.P., Timm, E.J., Girard, S.N., and Kanatzidis, M.G.: Room temperature Young's modulus, shear modulus, Poisson's ratio and hardness of PbTe–PbS thermoelectric materials. Mater. Sci. Eng. B 170, 5866 (2010).Google Scholar
43. Darrow, M.S., White, W.B., and Roy, R.: Micro-indentation hardness variation as a function of composition for polycrystalline solutions in the systems PbS/PbTe, PbSe/PbTe, and PbS/PbSe. J. Mater. Sci. 4, 313319 (1969).Google Scholar
44. Houston, B., Strakna, R.E., and Belson, H.S.: Elastic constants, thermal expansion, and Debye temperature of lead telluride. J. Appl. Phys. 39, 39133916 (1968).CrossRefGoogle Scholar
45. Pang, M., Bahr, D.F., and Lynn, K.G.: Effects of Zn addition and thermal annealing on yield phenomena of CdTe and Cd0.96Zn0.04Te single crystals by nanoindentation. Appl. Phys. Lett. 82, 12001202 (2003).Google Scholar
46. Luo, S., Lee, J.-H., Liu, C.-W., Shieh, J.-M., Shen, C.-H., Wu, T.-T., Jang, D., and Greer, J.R.: Strength, stiffness, and microstructure of Cu(In,Ga)Se2 thin films deposited via sputtering and co-evaporation. Appl. Phys. Lett. 105, 011907 (2014).Google Scholar
47. Lin, Y.-C., Peng, X.-Y., Wang, L.-C., Lin, Y.-L., Wu, C.-H., and Liang, S.-C.: Residual stress in CIGS thin film solar cells on polyimide: simulation and experiments. J. Mater. Sci. Mater. Electron. 25, 461465 (2014).Google Scholar
48. Grillo, S.E., Ducarroir, M., Nadal, M., Tournié, E., and Faurie, J.-P.: Nanoindentation of Si, GaP, GaAs and ZnSe single crystals. J. Phys. Appl. Phys. 36, L5 (2003).CrossRefGoogle Scholar
49. Kinsler, L., Frey, A.R., Coppens, A.B., and Sanders, J.V.: Fundamentals of Acoustics, 4th ed. (Wiley, New York, 2000) WW_marcado. Scribd at https://www.scribd.com/doc/39846878/Fundamentals-of-Acoustics-4th-Ed-L-Kinsler-Et-Al-Wiley-2000-WW-marcado (accessed August 10th, 2015).Google Scholar
Supplementary material: File

Rakita supplementary material S1

Rakita supplementary material

Download Rakita supplementary material S1(File)
File 2.5 MB