Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-27T23:50:45.821Z Has data issue: false hasContentIssue false

Mechanical and failure behaviors of lattice–plate hybrid structures

Published online by Cambridge University Press:  03 December 2019

Zhigang Liu
Affiliation:
Institute of High Performance Computing, A*STAR, Singapore138632, Singapore
Ping Liu*
Affiliation:
Institute of High Performance Computing, A*STAR, Singapore138632, Singapore
Wei Huang
Affiliation:
School of Aeronautics, Northwestern Polytechnical University, Xi'an, Shaanxi710072, People's Republic of China
Wei Hin Wong
Affiliation:
Institute of High Performance Computing, A*STAR, Singapore138632, Singapore
Athanasius Louis Commillus
Affiliation:
Institute of High Performance Computing, A*STAR, Singapore138632, Singapore
Yong-Wei Zhang
Affiliation:
Institute of High Performance Computing, A*STAR, Singapore138632, Singapore
*
Address all correspondence to Ping Liu at liuping@ihpc.a-star.edu.sg
Get access

Abstract

The authors design six alumina hybrid structures consisting of stretching-dominated plates and different space-filling lattices comprised of hollow tubes and perform finite element simulations to study mechanical and failure behaviors of such hybrid structures. The authors investigate the effects of three geometrical parameters on the stiffness and failure of these hybrid structures and further compare their advantages and disadvantages. The authors find that the failure modes of these hybrid structures can be tuned by altering cell unit type and geometrical parameters. Among these hybrid structures, the ones with effective support from the lattice unit cells in the stretching direction exhibit better specific stiffness and strength. By varying the lattice and plate thickness, the authors find that the relations between stiffness/failure strength and density follow a power law. When intrinsic material failure occurs, the power law exponent is 1; when buckling failure arises, the power law exponent is 3. However, by varying tube thickness, their relations follow unusual power relations with the exponent changing from nearly 0 to nearly infinity. In addition, the hybrid structures also exhibit defect insensitivity. This study shows that such hybrid structures are able to greatly expand the design space of architectured cellular materials for engineering applications.

Type
Prospective Articles
Copyright
Copyright © Materials Research Society 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Schaedler, T.A., Jacobsen, A.J., and Carter, W.B.: Toward lighter, stiffer materials. Science 341, 11811182 (2013).CrossRefGoogle ScholarPubMed
2Gibson, L.J. and Ashby, M.F.: Cellular Solids: Structure and Properties (Cambridge University Press, Cambridge, UK, 1997).CrossRefGoogle Scholar
3.Evans, A.G., Hutchinson, J.W., and Ashby, M.F.: Multifunctionality of cellular metal systems. Prog. Mater. Sci. 43, 171221 (1999).CrossRefGoogle Scholar
4.Wadley, H.B.G., Fleck, N.A., and Evans, A.G.: Fabrication and structural performance of periodic cellular metal sandwich structures. Compos. Sci. Technol. 63, 23312343 (2003).CrossRefGoogle Scholar
5.Deshpande, V.S., Fleck, N.A., and Ashby, M.F.: Effective properties of the octet truss lattice material. J. Mech. Phys. Solids 49, 17471769 (2001).CrossRefGoogle Scholar
6.Wadley, H.N.G.: Multifunctional periodic cellular metals. Philos. Trans. R. Soc. A 364, 3168 (2006).CrossRefGoogle ScholarPubMed
7.Deshpande, V.S., Ashby, M.F., and Fleck, N.A.: Foam topology: bending versus stretching dominated architectures. Acta Mater. 49, 10351040 (2001).CrossRefGoogle Scholar
8.Schaedler, T.A., Jacobsen, A.J., Torrents, A., Sorensen, A.E., Lian, J., Greer, J.R., Valdevit, L., and Carter, W.B.: Ultralight metallic microlattices. Science 334, 962965 (2011).CrossRefGoogle ScholarPubMed
9.Bauer, J., Hengsbach, S., Tesari, I., Schwaiger, R., and Kraft, O.: High-strength cellular ceramic composites with 3D microarchitecture. Proc. Natl. Acad. Sci. USA 111, 24532458 (2014).CrossRefGoogle ScholarPubMed
10.Eckel, Z.C., Zhou, C., Martin, J.H., Jacobsen, A.J., Carter, W.B., and Schaedler, T.A.: Additive manufacturing of polymer derived ceramics. Science 351, 5862 (2016).CrossRefGoogle ScholarPubMed
11.George, T., Deshpande, V.S., and Wadley, H.N.G.: Mechanical response of carbon fiber composite sandwich panels with pyramidal truss cores. Composites Part A 47, 3140 (2013).CrossRefGoogle Scholar
12.Cheung, K.C., and Gershenfeld, N.: Reversibly assembled cellular composite materials. Science 341, 12192121 (2013).CrossRefGoogle ScholarPubMed
13.Zheng, X., Lee, H., Weisgraber, T.H., Shusteff, M., DeOtte, J., Duoss, E.B., Kuntz, J.D., Biener, M.M., Ge, Q., Jackson, J.A., Kucheyev, S.O., Fang, N.X., and Spadaccini, C.M.: Ultralight, ultrastiff mechanical metamaterials. Science 344, 13731377 (2014).CrossRefGoogle ScholarPubMed
14.Dinwiddie, R.B., Dehoff, R.R., Lloyd, P.D., Lowe, L.E., and Ulrich, J.B.: Thermographic in-situ process monitoring of the electron-beam melting technology used in additive manufacturing. Proc. SPIE 8705, 87050K (2013).CrossRefGoogle Scholar
15.Wicks, N., and Hutchinson, J.W.: Optimal truss plates. Int. J. Solids Struct. 38, 51655183 (2001).CrossRefGoogle Scholar
16.Valdevit, L., Hutchinson, J.W., and Evans, A.G.: Structurally optimized sandwich panels with prismatic cores. Int. J. Solids Struct. 41, 51055124 (2004).CrossRefGoogle Scholar
17.Valdevit, L., Pantano, A., Stone, H.A., and Evans, A.G.: Optimal active cooling performance of metallic sandwich panels with prismatic cores. Int. J. Heat Mass Transf. 49, 38193830 (2006).CrossRefGoogle Scholar
18.Bendsoe, M.P., and Sigmund, O.: Topology Optimization (Springer, Berlin, 2002).Google Scholar
19.Christensen, P.W., and Klabering, A.: An Introduction to Structural Optimization (Springer, Berlin, 2008).Google Scholar
20.Altair Engineering Inc. Altair OptiStruct. http://www.altairhyperworks.com/Product (2013).Google Scholar
21.Autodesk Inc. Autodesk Within. http://www.withinlab.com/software/new_index.php (2015).Google Scholar
22.Liu, Z.G., Liu, P., Huang, W., Wong, W.H., Commillus, A.L., and Zhang, Y.W.: A nanolattice-plate hybrid structure to achieve a nearly linear relation between stiffness/strength and density. Mater. Design 160, 496502 (2018).CrossRefGoogle Scholar
23.Fleck, N.A., Deshpande, V.S., and Ashby, M.F.: Micro-architectured materials: past, present and future. Proc. R. Soc. A 466, 24952516 (2010).CrossRefGoogle Scholar
24.Rehme, O.: Cellular design for laser freeform fabrication, Ph.D. Thesis, Hamburg-Harburg, Technical University, 2009.Google Scholar
25.Andrews, E.W., Gioux, G., Onck, P.R., and Gibson, L.J.: Size effects in ductile cellular solids. Part II: experimental results. Int. J. Mech. Sci. 43, 701713 (2001).CrossRefGoogle Scholar
26.Kesler, O. and Gibson, L.J.: Size effects in metallic foam core sandwich beams. Mater. Sci. Eng., A 326, 228234 (2002).CrossRefGoogle Scholar
27.Dai, G. and Zhang, W.: Size effects of effective Young's modulus for periodic cellular materials. Sci. China, Ser. G: Phys., Mech. Astron. 52, 12621270 (2009).CrossRefGoogle Scholar
28.Onck, P.R., Andrews, E.W., and Gibson, L.J.: Size effects in ductile cellular solids. Part I: modeling. Int. J. Mech. Sci. 43, 681699 (2001).CrossRefGoogle Scholar
29.Tekoglu, C. and Onck, P.R.: Size effects in the mechanical behavior of cellular materials. J. Mater. Sci. 40, 59115917 (2005).CrossRefGoogle Scholar
30.ABAQUS Version 6.14. User's Manual Version 6.14 (Providence, RI, USA, 2014).Google Scholar
31.Gibson, L.J.: The mechanical behavior of cancellous bone. J. Biomech. 18, 317328 (1985).CrossRefGoogle ScholarPubMed
32.Gibson, L.J. and Ashby, M.F.: The mechanics of two-dimensional cellular materials. Proc. R. Soc. A 382, 2542 (1982).Google Scholar
33.Gibson, L.J. and Ashby, M.F.: The mechanics of three-dimensional cellular materials. Proc. R. Soc. A 382, 4359 (1982).Google Scholar
34.Gibson, L.J., Ashby, M.F., and Easterling, K.E.: Structure and mechanics of the iris leaf. J. Mater. Sci. 23, 30413048 (1988).CrossRefGoogle Scholar
35.Gibson, L.J., Ashby, M.F., Karam, G.N., Wegst, U., and Shercliff, H.R.: The mechanical properties of natural materials II: microstructures for mechanical efficiency. Proc. R. Soc. A 450, 141162 (1995).Google Scholar
36.Gibson, L.J.: Biomechanics of cellular solids. J. Biomech. 38, 377399 (2005).CrossRefGoogle ScholarPubMed
37.Montemayor, L.C., Wong, W.H., Zhang, Y.W., and Greer, J.R.: Insensitivity to flaws leads to damage tolerance in brittle architected meta-materials. Sci. Rep. 6, 20570 (2016).CrossRefGoogle ScholarPubMed
38.Mateos, A.J., Huang, W., Zhang, Y.W., and Greer, J.R.: Discrete-continuum duality of architected materials: failure, flaws, and fracture. Adv. Funct. Mater. 29, 1806772 (2019).Google Scholar
39.Abazari, A.M., Safavi, S.M., Rezazadeh, G., and Villanueva, L.G.: Modelling the size effects on the mechanical properties of micro/nano structures. Sensors 15, 2854328562 (2015).CrossRefGoogle ScholarPubMed
40.Greer, J.R., and Hosson, J.T.M.: Plasticity in small-sized metallic systems: intrinsic versus extrinsic size effect. Prog. Mater. Sci. 56, 654724 (2011).CrossRefGoogle Scholar