Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-14T22:39:31.107Z Has data issue: false hasContentIssue false

Magnetostructural phase transitions and large magnetic entropy changes in Ag-doped Mn1−xAgxCoGe intermetallic compounds

Published online by Cambridge University Press:  02 January 2019

Anil Aryal*
Affiliation:
Department of Physics, Southern Illinois University, Carbondale, IL 62901, USA
Sudip Pandey
Affiliation:
Department of Physics, Southern Illinois University, Carbondale, IL 62901, USA
Igor Dubenko
Affiliation:
Department of Physics, Southern Illinois University, Carbondale, IL 62901, USA
Dipanjan Mazumdar
Affiliation:
Department of Physics, Southern Illinois University, Carbondale, IL 62901, USA
Shane Stadler
Affiliation:
Department of Physics & Astronomy, Louisiana State University, Baton Rouge, LA 70803, USA
Naushad Ali
Affiliation:
Department of Physics, Southern Illinois University, Carbondale, IL 62901, USA
*
Address all correspondence to Anil Aryal at aryalanil@siu.edu
Get access

Abstract

The influence of Ag-doping on the crystallographic structure, magnetic properties, and magnetocaloric effects of Mn1−xAgxCoGe (0.01 ⩽ x ⩽ 0.10) is reported. A transformation of crystal structure from orthorhombic to hexagonal was observed at room temperature. Doping Ag in Mn sites results in a first-order magnetostructural transition near room temperature. A Curie-temperature window of 90 K was obtained between the Curie temperatures of the austenite (Ni2In-type) and martensite (TiNiSi-type) phases. Large magnetic entropy change values of ~22.0 and 9.4 J/kg/K, and refrigerant capacity of 308 and 272 J/kg, were found for x = 0.06 and 0.05, respectively, for μ0ΔH = 5 T.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Pecharsky, A.O., Gschneidner, K.A. Jr, and Pecharsky, V.K.: The giant magnetocaloric effect of optimally prepared Gd5Si2Ge2. J. Appl. Phys. 93, 4722 (2003).Google Scholar
2.Tegus, O., Bruck, E., Buschow, K.H.J., and de Boer, F.R.: Transition-metal-based magnetic refrigerants for room-temperature applications. Nature (London) 415, 150 (2002).Google Scholar
3.Krenke, T., Duman, E., Acet, M., Wassermann, E.F., Moya, X., Mañosa, L., and Planes, A.: Inverse magnetocaloric effect in ferromagnetic Ni–Mn–Sn alloys. Nat. Mater. 4, 450 (2005).Google Scholar
4.Yu, S.Y., Liu, Z.H., Liu, G.D., Chen, J.L., Cao, Z.X., Wu, G.H., Zhang, B., and Zhang, X.X.: Large magnetoresistance in single-crystalline Ni50Mn50−xInx alloys (x=14–16) upon martensitic transformation. Appl. Phys. Lett. 89, 162503 (2006).Google Scholar
5.Kainuma, R., Imano, Y., Ito, W., Sutou, Y., Morito, H., Okamoto, S., Kitakami, O., Oikawa, K., Fujita, A., Kanomata, T., and Ishida, K.: Magnetic-field-induced shape recovery by reverse phase transformation. Nature (London) 439, 957 (2006).Google Scholar
6.Niziol, S., Zieba, A., Zach, R., Baj, M., and Dmowski, L.: Structural and magnetic phase transitions in CoxNi1−xMnGe system under pressure. J. Magn. Magn. Mater. 38, 205 (1983).Google Scholar
7.Kaprzyk, S. and Niziol, S.: The electronic structure of CoMnGe with the hexagonal and orthorhombic crystal structure. J. Magn. Magn. Mater. 87, 267 (1990).Google Scholar
8.Szytula, A., Pedziwiatr, A.T., Tomkowicz, Z., and Bazela, W.: Crystal and magnetic structure of CoMnGe, CoFeGe, FeMnGe and NiFeGe. J. Magn. Magn. Mater. 25, 176 (1981).Google Scholar
9.Lin, S., Tegus, O., Brück, E., Dagula, W., Gortenmulder, T.J., and Buschow, K.H.J.: Structural and magnetic properties of MnFe1−xCoxGe compounds. IEEE Trans. Magn. 42, 3776 (2006).Google Scholar
10.Kanomata, T., Ishigaki, H., Sato, K., Shinohara, T., Wagatsuma, F., and Kaneko, T.: NMR study of 55Mn and 59Co in MnCoGe. J. Magn. Soc. Jpn. 23, 418 (1999).Google Scholar
11.Kanomata, T., Ishigaki, H., Suzuki, T., Yoshida, H., Abe, S., and Kaneko, T.: Magneto-volume effect of MnCo1−xGe (0⩽x ⩽0.2). J. Magn. Magn. Mater. 131, 140 (1995).Google Scholar
12.Fang, Y.K., Yeh, C.C., Chang, C.W., Chang, W.C., Zhu, M.G., and Li, W.: Large low-field magnetocaloric effect in MnCo0.95Ge1.14 alloy. Scr. Mater. 57, 453 (2007).Google Scholar
13.Wang, J.T., Wang, D.S., Chen, C.F., Nashima, O., Kanomata, T., Mizuseki, H., and Kawazoe, Y.: Vacancy induced structural and magnetic transition in MnCo1–xGe. Appl. Phys. Lett. 89, 262504 (2006).Google Scholar
14.Liu, E.K., Zhu, W., Feng, L., Chen, J.L., Wang, W.H., Wu, G.H., Liu, H.Y., Meng, F.B., Luo, H.Z., and Li, Y.X.: Vacancy-tuned paramagnetic/ferromagnetic martensitic transformation in Mn-poor Mn1−xCoGe alloys. Europhys. Lett., 91, 17003 (2010).Google Scholar
15.Trung, N.T., Zhang, L., Caron, L., Buschow, K.H.J., and Bruck, E.: Giant magnetocaloric effects by tailoring the phase transitions. Appl. Phys. Lett. 96, 172504 (2010).Google Scholar
16.Trung, N.T., Biharie, V., Zhang, L., Caron, L., Buschow, K.H.J., and Bruck, E.: From single- to double-first-order magnetic phase transition in magnetocaloric Mn1−xCrxCoGe compounds. Appl. Phys. Lett. 96, 162507 (2010).Google Scholar
17.Li, G.J., Liu, E.K., Zhang, H.G., Zhang, Y.J., Chen, J.L., Wang, W.H., Zhang, H.W., Wu, G.H., and Yu, S.Y.: Phase diagram, ferromagnetic martensitic transformation and magnetoresponsive properties of Fe-doped MnCoGe alloys. J. Magn. Magn. Mater. 332, 146 (2013).Google Scholar
18.Samanta, T., Dubenko, I., Quetz, A., Stadler, S., and Ali, N.: Giant magnetocaloric effects near room temperature in Mn1–xCuxCoGe. Appl. Phys. Lett. 101, 242405 (2012).Google Scholar
19.Samanta, T., Dubenko, I., Quetz, A., Stadler, S., and Ali, N.: Large magnetocaloric effects over a wide temperature range in MnCo1−xZnxGe. J. Appl. Phys. 113, 17A922 (2013).Google Scholar
20.Aryal, A., Quetz, A., Pandey, S., Dubenko, I., Stadler, S., and Ali, N.: Phase transitions and magnetocaloric properties in MnCo1−xZrxGe compounds. Adv. Condensed Matter Phys. 2017, 16 (2017).Google Scholar
21.Aryal, A., Quetz, A., Pandey, S., Samanta, T., Dubenko, I., Hill, M., Mazumdar, D., Stadler, S., and Ali, N.: Magnetostructural phase transitions and magnetocaloric effects in as-cast Mn1−xAlxCoGe compounds. J. Alloys Compd. 709, 142 (2017).Google Scholar
22.Ma, S.C., Zheng, Y.X., Xuan, H.C., Shen, L.J., Cao, Q.Q., Wang, D.H., Zhong, Z.C., and Du, Y.W.: Large room temperature magnetocaloric effect with negligible magnetic hysteresis losses in Mn1−xVxCoGe alloys. J. Magn. Magn. Mater. 324, 135 (2012).Google Scholar
23.Caron, L., Trung, N.T., and Brück, E.: Pressure-tuned magnetocaloric effect in Mn0.93Cr0.07CoGe. Phys. Rev. B 84, 020414(R) (2011).Google Scholar
24.Zhang, C.L., Shi, H.F., Ye, E.J., Nie, Y.G., Han, Z.D., and Wang, D.H.: Magnetostructural transition and magnetocaloric effect in MnCoGe–NiCoGe system. J. Alloys Compd. 639, 36 (2015).Google Scholar
25.Zhang, H., Li, Y., Liu, E., Tao, K., Wu, M., Wang, Y., Zhou, H., Xue, Y., Cheng, C., Yan, T., Long, K., and Long, Y.: Multiple magnetic transitions in MnCo1−xCuxGe driven by changes in atom separation and exchange interaction. Mater. Des. 114, 531 (2017).Google Scholar
26.Pearson, W.B.: The Crystal Chemistry and Physics of Metals and Alloys (Wiley-Interscience, New York, 1972).Google Scholar
27.Yuce, S., Bruno, N.M., Emre, B., and Karaman, I.: Accessibility investigation of large magnetic entropy change in CoMn1−xFexGe. J. Appl. Phys. 119, 133901 (2016).Google Scholar
28.Pecharsky, V.K. and Gschneidner, K.A. Jr.: Giant magnetocaloric effect in Gd5(Si2Ge2). Phys. Rev. Lett. 78, 4494 (1997).Google Scholar
29.Fujita, A., Fujieda, S., Hasegawa, Y., and Fukamichi, K.: Itinerant electron metamagnetic transition and large magnetocaloric effects in La(FexSi1−x)13 compounds and their hydrides. Phys. Rev. B 67, 104416 (2003).Google Scholar
Supplementary material: File

Aryal et al. supplementary material

Figure S1

Download Aryal et al. supplementary material(File)
File 314.7 KB