Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T21:53:05.676Z Has data issue: false hasContentIssue false

Long-term stability of mechanically exfoliated MoS2 flakes

Published online by Cambridge University Press:  28 September 2017

Prachi Budania*
Affiliation:
School of Electronics, Electrical Engineering and Computer Science, Queen's University, Belfast BT9 5AH, UK
Paul Baine
Affiliation:
School of Electronics, Electrical Engineering and Computer Science, Queen's University, Belfast BT9 5AH, UK
John Montgomery
Affiliation:
School of Electronics, Electrical Engineering and Computer Science, Queen's University, Belfast BT9 5AH, UK
Conor McGeough
Affiliation:
School of Physical Sciences, Dublin City University, Glasnevin, Dublin D09 NR58, Ireland
Tony Cafolla
Affiliation:
School of Physical Sciences, Dublin City University, Glasnevin, Dublin D09 NR58, Ireland
Mircea Modreanu
Affiliation:
Tyndall National Institute, University College Cork, Cork T12 R5CP, Ireland
David McNeill
Affiliation:
School of Electronics, Electrical Engineering and Computer Science, Queen's University, Belfast BT9 5AH, UK
Neil Mitchell
Affiliation:
School of Electronics, Electrical Engineering and Computer Science, Queen's University, Belfast BT9 5AH, UK
Greg Hughes
Affiliation:
School of Physical Sciences, Dublin City University, Glasnevin, Dublin D09 NR58, Ireland
Paul Hurley
Affiliation:
Tyndall National Institute, University College Cork, Cork T12 R5CP, Ireland
*
Address all correspondence to Prachi Budania at pbudania01@qub.ac.uk
Get access

Abstract

The long-term stability of mechanically exfoliated MoS2 flakes was compared for storage in the air and storage under vacuum. Significant changes in MoS2 flakes were observed for samples stored in the air, whereas similar flakes on samples stored in vacuum underwent no change. Small speckles were observed to appear on the surface of flakes stored in the air, followed by thinning and eventual decomposition of MoS2 flakes. The speckles are suspected to be formed by oxidation of MoS2 in the presence of atmospheric oxygen and water molecules, resulting in the formation of hydrated MoO3.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Yin, Z., Li, H., Li, H., Jiang, L., Shi, Y., Sun, Y., Lu, G., Zhang, Q., Chen, X., and Zhang, H.: Single-layer MoS2 phototransistors. ACS Nano 6, 7480 (2012).CrossRefGoogle ScholarPubMed
2. Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V., and Kis, A.: Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147150 (2011).CrossRefGoogle ScholarPubMed
3. Kim, S., Konar, A., Hwang, W.-S., Lee, J.H., Lee, J., Yang, J., Jung, C., Kim, H., Yoo, J.-B., Choi, J.-Y., Jin, Y.W., Lee, S.Y., Jena, D., Choi, W., and Kim, K.: High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals. Nat. Commun. 3, 1011 (2012).CrossRefGoogle ScholarPubMed
4. Wu, J., Li, H., Yin, Z., Li, H., Liu, J., Cao, X., Zhang, Q., and Zhang, H.: Layer thinning and etching of mechanically exfoliated MoS2 nanosheets by thermal annealing in air. Small 9, 33143319 (2013).CrossRefGoogle ScholarPubMed
5. Rotunno, E., Fabbri, F., Cinquanta, E., Kaplan, D., Longo, M., Lazzarini, L., Molle, A., Swaminathan, V., and Salviati, G.: Structural, optical and compositional stability of MoS2 multi-layer flakes under high dose electron beam irradiation. 2D Mater. 3, 025024 (2016).CrossRefGoogle Scholar
6. Late, D.J., Liu, B., Matte, H.S.S.R., Dravid, V.P., and Rao, C.N.R.: Hysteresis in single-layer MoS2 field effect transistors. ACS Nano 6, 56355641 (2012).CrossRefGoogle ScholarPubMed
7. Lee, G.-H., Cui, X., Kim, Y.D., Arefe, G., Zhang, X., Lee, C.-H., Ye, F., Watanabe, K., Taniguchi, T., Kim, P., and Hone, J.: Highly stable, dual-gated MoS2 transistors encapsulated by hexagonal boron nitride with gate-controllable contact, resistance, and threshold voltage. ACS Nano 9, 70197026 (2015).CrossRefGoogle ScholarPubMed
8. Qiu, H., Pan, L., Yao, Z., Li, J., Shi, Y., and Wang, X.: Electrical characterization of back-gated bi-layer MoS2 field-effect transistors and the effect of ambient on their performances. Appl. Phys. Lett. 100, 123104 (2012).CrossRefGoogle Scholar
9. Gao, J., Li, B., Tan, J., Chow, P., Lu, T.-M., and Koratkar, N.: Aging of transition metal dichalcogenide monolayers. ACS Nano 10, 26282635 (2016).CrossRefGoogle ScholarPubMed
10. Liu, H.F., Wong, S.L., and Chi, D.Z.: CVD growth of MoS2-based two-dimensional materials. Chem. Vap. Depos. 21, 241259 (2015).CrossRefGoogle Scholar
11. Zhou, W., Zou, X., Najmaei, S., Liu, Z., Shi, Y., Kong, J., Lou, J., Ajayan, P.M., Yakobson, B.I., and Idrobo, J.-C.: Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett.. 13, 26152622 (2013).CrossRefGoogle ScholarPubMed
12. Budania, P., Baine, P., Montgomery, J., McNeill, D., Mitchell, S.J., Modreanu, M., and Hurley, P.: Comparison between Scotch tape and gel-assisted mechanical exfoliation techniques for preparation of 2D transition metal dichalcogenide flakes. Micro Nano Lett.. (2017) doi: 10.1049/mnl.2017.0280.CrossRefGoogle Scholar
13. Li, H., Wu, J., Huang, X., Lu, G., Yang, J., Lu, X., Xiong, Q., and Zhang, H.: Rapid and reliable thickness identification of two-dimensional nanosheets using optical microscopy. ACS Nano 7, 1034410353 (2013).CrossRefGoogle ScholarPubMed
14. Li, H., Zhang, Q., Yap, C.C.R., Tay, B.K., Edwin, T.H.T., Olivier, A., and Baillargeat, D.: From bulk to monolayer MoS2: evolution of Raman scattering. Adv. Funct. Mater. 22, 13851390 (2012).CrossRefGoogle Scholar
15. Lee, C., Yan, H., Brus, L.E., Heinz, T.F., Hone, J., and Ryu, S.: Anomalous lattice vibrations of single- and few-layer MoS2 . ACS Nano 4, 26952700 (2010).CrossRefGoogle ScholarPubMed
16. Houben, L., Luysberg, M., Hapke, P., Carius, R., Finger, F., and Wagner, H.: Structural properties of microcrystalline silicon in the transition from highly crystalline to amorphous growth. Philos. Mag. A 77, 14471460 (1998).CrossRefGoogle Scholar
17. Sahoo, S., Gaur, A.P.S., Ahmadi, M., Guinel, M.J.F., and Katiyar, R.S.: Temperature-dependent Raman studies and thermal conductivity of few-layer MoS2 . J. Phys. Chem. C 117, 90429047 (2013).CrossRefGoogle Scholar
18. Zhang, X., Jia, F., Yang, B., and Song, S.: Oxidation of molybdenum disulfide sheet in water under in situ atomic force microscopy observation. J. Phys. Chem. C 121, 99389943 (2017).CrossRefGoogle Scholar
19. Fleischauer, P.D., and Lince, J.R.: A comparison of oxidation and oxygen substitution in MoS2 solid film lubricants. Tribol. Int. 32, 627636 (1999).CrossRefGoogle Scholar
20. Lince, J.R. and Frantz, P.P.: Anisotropic oxidation of MoS2 crystallites studied by angle-resolved x-ray photoelectron spectroscopy. Tribol. Lett. 9, 211218 (2001).CrossRefGoogle Scholar
21. Liu, H., Han, N., and Zhao, J.: Atomistic insight into the oxidation of monolayer transition metal dichalcogenides: from structures to electronic properties. RSC Adv. 5, 1757217581 (2015).CrossRefGoogle Scholar
22. Mirabelli, G., McGeough, C., Schmidt, M., McCarthy, E.K., Monaghan, S., Povey, I.M., McCarthy, M., Gity, F., Nagle, R., Hughes, G., Cafolla, A., Hurley, P.K. and Duffy, R.: Air sensitivity of MoS2, MoSe2, MoTe2, HfS2, and HfSe2 . J. Appl. Phys. 120, 125102 (2016).CrossRefGoogle Scholar
23. Wood, J.D., Wells, S.A., Jariwala, D., Chen, K.-S., Cho, E., Sangwan, V.K., Liu, X., Lauhon, L.J., Marks, T.J., and Hersam, M.C.: Effective passivation of exfoliated black phosphorus transistors against ambient degradation. Nano Lett.. 14, 69646970 (2014).CrossRefGoogle ScholarPubMed
Supplementary material: File

Budania et al. supplementary material

Budania et al. supplementary material 1

Download Budania et al. supplementary material(File)
File 13.5 MB