Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T23:51:28.292Z Has data issue: false hasContentIssue false

Ion-modulated transistors on paper using phase-separated semiconductor/insulator blends

Published online by Cambridge University Press:  07 April 2014

Fredrik Pettersson*
Affiliation:
Department of Natural Sciences/Physics, Åbo Akademi University, Porthaninkatu 3, 20500 Turku, Finland
Ronald Österbacka
Affiliation:
Department of Natural Sciences/Physics, Åbo Akademi University, Porthaninkatu 3, 20500 Turku, Finland
Janne Koskela
Affiliation:
Electronics Laboratory, University of Oulu, PL 4500, FI-90014 Oulu, Finland
Ari Kilpelä
Affiliation:
Electronics Laboratory, University of Oulu, PL 4500, FI-90014 Oulu, Finland
Tommi Remonen
Affiliation:
Department of Natural Sciences/Physics, Åbo Akademi University, Porthaninkatu 3, 20500 Turku, Finland; Department of Chemical Engineering/Polymer Technology, Åbo Akademi University, Piispankatu 8, 20500 Turku, Finland
Yanxi Zhang
Affiliation:
Department of Chemical Engineering/Polymer Technology, Åbo Akademi University, Piispankatu 8, 20500 Turku, Finland
Saara Inkinen
Affiliation:
Department of Chemical Engineering/Polymer Technology, Åbo Akademi University, Piispankatu 8, 20500 Turku, Finland
Carl-Eric Wilén
Affiliation:
Department of Chemical Engineering/Polymer Technology, Åbo Akademi University, Piispankatu 8, 20500 Turku, Finland
Roger Bollström
Affiliation:
Department of Chemical Engineering/Paper Coating and Converting, Åbo Akademi University, Porthaninkatu 3, 20500 Turku, Finland
Martti Toivakka
Affiliation:
Department of Chemical Engineering/Paper Coating and Converting, Åbo Akademi University, Porthaninkatu 3, 20500 Turku, Finland
Anni Määttänen
Affiliation:
Department of Natural Sciences/Physical Chemistry, Åbo Akademi University, Porthaninkatu 3, 20500 Turku, Finland
Petri Ihalainen
Affiliation:
Department of Natural Sciences/Physical Chemistry, Åbo Akademi University, Porthaninkatu 3, 20500 Turku, Finland
Jouko Peltonen
Affiliation:
Department of Natural Sciences/Physical Chemistry, Åbo Akademi University, Porthaninkatu 3, 20500 Turku, Finland
*
Address all correspondence to Fredrik Pettersson atfredrik.pettersson@abo.fi
Get access

Abstract

We have used phase-separated poly(3-hexyltiophene) (P3HT)/poly(L-lactic acid) (PLLA) blends to fabricate low-voltage ion-modulated transistors on a rough paper substrate. The semiconductor and insulator are mixed together in a solution and spin casted onto the paper substrate. Owing to their different solubilities and surface energies the P3HT and PLLA will phase separate vertically during the spinning process creating a thin layer of semiconductor on top of the insulator. This thin semiconductor layer, difficult to achieve by other means on an absorbing paper substrate, creates faster ion-modulated transistors. Using this approach we have created ring-oscillators on paper oscillating at 5 Hz.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Allwood, J.M., Ashby, M.F., Gutowski, T.G., and Worrell, E.: Material efficiency: a white paper. Resour. Conserv. Recycl. 55, 362 (2011).Google Scholar
2.Irimia-vladu, M., Głowacki, E.D., Voss, G., Bauer, S., and Sariciftci, N.S.: Green and biodegradable electronics. Mater. Today 15, 340 (2012).CrossRefGoogle Scholar
3.Sandberg, H.G.O., Bäcklund, T.G., Österbacka, R., and Stubb, H.: High-performance all-polymer transistor utilizing a hygroscopic insulator. Adv. Mater. 16, 1112 (2004).CrossRefGoogle Scholar
4.Panzer, M.J., Newman, C.R., and Frisbie, C.D.: Low-voltage operation of a pentacene field-effect transistor with a polymer electrolyte gate dielectric. Appl. Phys. Lett. 86, 103503 (2005).CrossRefGoogle Scholar
5.Kim, S.H., Hong, K., Xie, W., Lee, K.H., Zhang, S., Lodge, T.P., and Frisbie, C.D.: Electrolyte-gated transistors for organic and printed electronics. Adv. Mater. 25, 1822 (2013).Google Scholar
6.Said, E., Crispin, X., Herlogsson, L., Elhag, S., Robinson, N.D., and Berggren, M.: Polymer field-effect transistor gated via a poly(styrenesulfonic acid) thin film. Appl. Phys. Lett. 89, 143507 (2006).Google Scholar
7.Koskela, J., Kilpelä, A., Björklund, N., and Österbacka, R.: A ring oscillator based on HIFETs. Org. Electron. 13, 84 (2012).Google Scholar
8.Kaihovirta, N.J., Tobjörk, D., Mäkelä, T., and Österbacka, R.: Absence of substrate roughness effects on an all-printed organic transistor operating at one volt. Appl. Phys. Lett. 93, 053302 (2008).Google Scholar
9.Herlogsson, L., Noh, Y.-Y., Zhao, N., Crispin, X., Sirringhaus, H., and Berggren, M.: Downscaling of organic field-effect transistors with a polyelectrolyte gate insulator. Adv. Mater. 20, 4708 (2008).Google Scholar
10.Lee, J., Kaake, L.G., Cho, J.H., Zhu, X.-Y., Lodge, T.P., and Frisbie, C.D.: Ion gel-gated polymer thin-film transistors: operating mechanism and characterization of gate dielectric capacitance, switching speed, and stability. J. Phys. Chem. C 113, 8972 (2009).Google Scholar
11.Qiu, L., Lim, J.A., Wang, X., Lee, W.H., Hwang, M., and Cho, K.: Versatile use of vertical-phase-separation-induced bilayer structures in organic thin-film transistors. Adv. Mater. 20, 1141 (2008).Google Scholar
12.Inkinen, S., Hakkarainen, M., Albertsson, A.-C., and Södergård, A.: From lactic acid to poly(lactic acid) (PLA): characterization and analysis of PLA and its precursors. Biomacromolecules 12, 523 (2011).Google Scholar
13.Asai, S., Komatsu, Y., Shirahase, T., Tominaga, Y., and Sumita, M.: Structure and degradation behavior of PLLA and PMMA blends. Kaut. Gummi Kunsts. 60, 372 (2007).Google Scholar
14.Jung, J.W., Jo, J.W., and Jo, W.H.: Enhanced performance and air stability of polymer solar cells by formation of a self-assembled buffer layer from fullerene-end-capped poly(ethylene glycol). Adv. Mater. 23, 1782 (2011).Google Scholar
15.Yang, J., Wan, Y., Tu, C., Cai, Q., Bei, J., and Wang, S.: Enhancing the cell affinity of macroporous poly(L-lactide) cell scaffold by a convenient surface modification method. Polym. Int. 52, 1892 (2003).Google Scholar
16.Veres, J., Ogier, S., Lloyd, G., and de Leeuw, D.: Gate insulators in organic field-effect transistors. Chem. Mater. 16, 4543 (2004).CrossRefGoogle Scholar
17.Gomes, H., Stallinga, P., Colle, M., Biscarini, F., and de Leeuw, D.: The effect of water related traps on the reliability of organic based transistors. J. Non. Cryst. Solids 352, 1761 (2006).Google Scholar
18.Bollström, R., Määttänen, A., Tobjörk, D., Ihalainen, P., Kaihovirta, N., Österbacka, R., Peltonen, J., and Toivakka, M.: A multilayer coated fiber-based substrate suitable for printed functionality. Org. Electron. 10, 1020 (2009).Google Scholar
19.Larsson, O., Laiho, A., Schmickler, W., Berggren, M., and Crispin, X.: Controlling the dimensionality of charge transport in an organic electrochemical transistor by capacitive coupling. Adv. Mater. 23, 4764 (2011).CrossRefGoogle Scholar
20.Lee, K.H., Zhang, S., Lodge, T.P., and Frisbie, C.D.: Electrical impedance of spin-coatable ion gel films. J. Phys. Chem. B 115, 3315 (2011).Google Scholar
Supplementary material: File

Pettersson Supplementary Material

Figures S1 and S2

Download Pettersson Supplementary Material(File)
File 1.3 MB