Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-14T22:54:50.714Z Has data issue: false hasContentIssue false

Influence of the injection temperature on the size of Ni–Pt polyhedral nanoparticles synthesized by the hot-injection method

Published online by Cambridge University Press:  08 November 2017

J.L. Reyes-Rodríguez*
Affiliation:
Departamento de Química, Centro de Investigación y de Estudios Avanzados del I.P.N. CINVESTAV. Av. I.P.N. 2508, Col. Zacatenco, Delegación Gustavo A. Madero, C.P. 07360, Ciudad de México, México
A. Velázquez-Osorio
Affiliation:
Departamento de Química, Centro de Investigación y de Estudios Avanzados del I.P.N. CINVESTAV. Av. I.P.N. 2508, Col. Zacatenco, Delegación Gustavo A. Madero, C.P. 07360, Ciudad de México, México
O. Solorza-Feria
Affiliation:
Departamento de Química, Centro de Investigación y de Estudios Avanzados del I.P.N. CINVESTAV. Av. I.P.N. 2508, Col. Zacatenco, Delegación Gustavo A. Madero, C.P. 07360, Ciudad de México, México
D. Bahena-Uribe
Affiliation:
Laboratorio Avanzado de Nanoscopía Electrónica (LANE), CINVESTAV, Av. I.P.N. 2508, Col. Zacatenco, Delegación Gustavo A. Madero, C.P. 07360, Ciudad de México, México
J. Roque
Affiliation:
Laboratorio Avanzado de Nanoscopía Electrónica (LANE), CINVESTAV, Av. I.P.N. 2508, Col. Zacatenco, Delegación Gustavo A. Madero, C.P. 07360, Ciudad de México, México
*
Address all correspondence to J.L. Reyes-Rodríguez at jreyes@cinvestav.mx
Get access

Abstract

Ni–Pt polyhedral nanoparticles were synthesized through a thermochemical route by the hot-injection method using Oleylamine (Oam) and Oleic acid (Oac) solvents as simultaneous stabilizing and reducing agents. Several syntheses were performed to study the effect of the hot-injection temperature on nanoparticle size distribution. Results revealed that the injection of precursors in a mixture of Oam and Oac at 180 °C produced paramagnetic nanoparticles with an approximate size of 27 nm; these particles have uniformly defined polyhedral structures and show greater Pt accumulation on the edges and corners. Ni–Pt polyhedral nanoparticles with larger sizes and high polydispersity were obtained as the injection temperature was increased closer to the reduction temperature.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Wang, Y., Wan, D., Xian, S., Xia, X., Huang, C.Z., and Xia, Y.: Synthesis of silver octahedra with controlled sizes and optical properties via seed-mediated growth. ACS Nano. 7, 4586 (2013).Google Scholar
2. Vargas, E., Toro, P., Palma, J.L., Escrig, J., Chanéac, C., Coradin, T., and Denardin, J.C.: Facile synthesis and magnetic characterizations of single-crystalline hexagonal cobalt nanoplates. Mater. Lett. 94, 121 (2013).Google Scholar
3. Gonzalez, E., Arbiol, J., and Puntes, V.F.: Carving at the nanoscale: sequential galvanic exchange and Kirkendall growth at room temperature. Science 334, 1377 (2011).CrossRefGoogle ScholarPubMed
4. Xie, X., Li, Y., Liu, Z.-Q., Haruta, M., and Shen, W.: Low-temperature oxidation of CO catalyzed by Co3O4 nanorods. Nature 458, 746 (2009).Google Scholar
5. Li, J., Liu, J., Yang, Y., and Qin, D.: Bifunctional Ag@Pd-Ag nanocubes for highly sensitive monitoring of catalytic reactions by surface-enhanced Raman spectroscopy. J. Am. Chem. Soc. 137, 7039 (2015).Google Scholar
6. Cui, C., Gan, L., Li, H.H., Yu, S.H., Heggen, M., and Strasser, P.: Octahedral PtNi nanoparticle catalysts: exceptional oxygen reduction activity by tuning the alloy particle surface composition. Nano Lett. 12, 5885 (2012).Google Scholar
7. Huang, X., Zhao, Z., Cao, L., Chen, Y., Zhu, E., Lin, Z., Li, M., Yan, A., Zettl, A., Wang, Y.M., Duan, X., Mueller, T., and Huang, Y.: High-performance transition metal – doped Pt3Ni octahedra for oxygen reduction reaction. Science 348, 1230 (2015).CrossRefGoogle ScholarPubMed
8. Nosheen, F., Zhang, Z., Zhuang, J., and Wang, X.: One-pot fabrication of single-crystalline octahedral Pt–Cu nanoframes and their enhanced electrocatalytic activity. Nanoscale 5, 3660 (2013).CrossRefGoogle ScholarPubMed
9. McEachran, M., Keogh, D., Pietrobon, B., Cathcart, N., Gourevich, I., Coombs, N., and Kitaev, V.: Ultrathin gold nanoframes through surfactant-free templating of faceted pentagonal silver nanoparticles. J. Am. Chem. Soc. 133, 8066 (2011).Google Scholar
10. Ham, S., Jang, H.-J., Song, Y., Shuford, K.L., and Park, S.: Octahedral and cubic gold nanoframes with platinum framework. Angew. Chemie Int. Ed. 54, 9025 (2015).CrossRefGoogle ScholarPubMed
11. Becknell, N., Zheng, C., Chen, C., Yu, Y., and Yang, P.: Synthesis of PtCo3 polyhedral nanoparticles and evolution to Pt3Co nanoframes. Surf. Sci. 648, 328 (2015).CrossRefGoogle Scholar
12. Chen, C., Kang, Y., Huo, Z., Zhu, Z., Huang, W., Xin, H.L., Snyder, J.D., Li, D., Herron, J.A., Mavrikakis, M., Chi, M., More, K.L., Li, Y., Markovic, N.M., Somorjai, G.A., Yang, P., and Stamenkovic, V.R.: Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 343, 1339 (2014).Google Scholar
13. Guisbiers, G., Mendoza-Pérez, R., Bazán-Díaz, L., Mendoza-Cruz, R., Velázquez-Salazar, J.J., and Yacamán, M.J.: Size and shape effects on the phase diagrams of nickel-based bimetallic nanoalloys. J. Phys. Chem. C 121, 6930 (2017).Google Scholar
14. Guisbiers, G., Mendoza-Cruz, R., Bazán-Díaz, L., Velázquez-Salazar, J.J., Mendoza-Pérez, R., Robledo-Torres, J.A., Rodríguez-López, J.L., Montejano-Carrizales, J.M., Whetten, R.L., and Yacamán, M.J.: Electrum, the Gold-Silver alloy, from the bulk scale to the nanoscale: synthesis, properties, and segregation rules. ACS Nano 10, 188 (2016).CrossRefGoogle Scholar
15. Mourdikoudis, S. and Liz-Marzán, L.M.: Oleylamine in nanoparticle synthesis. Chem. Mater. 25, 1465 (2013).Google Scholar
16. Bu, W., Chen, Z., Chen, F., and Shi, J.: Oleic acid/oleylamine cooperative-controlled crystallization mechanism for monodisperse tetragonal bipyramid NaLa(MoO4)2 nanocrystals. J. Phys. Chem. C. 113, 12176 (2009).Google Scholar
17. Humphrey, J.J.L., Sadasivan, S., Plana, D., Celorrio, V., Tooze, R.A., and Fermín, D.J.: Surface activation of Pt nanoparticles synthesized by “Hot Injection” in the presence of Oleylamine. Chem. – A Eur. J. 21, 12694 (2015).Google Scholar
18. Georgiadou, V., Kokotidou, C., Le Droumaguet, B., Carbonnier, B., Choli-Papadopoulou, T., and Dendrinou-Samara, C.: Oleylamine as a beneficial agent for the synthesis of CoFe2O4 nanoparticles with potential biomedical uses. Dalt. Trans. 43, 6377 (2014).Google Scholar
19. Xu, Z., Shen, C., Hou, Y., Gao, H., and Sun, S.: Oleylamine as both reducing agent and stabilizer in a facile synthesis of magnetite nanoparticles. Chem. Mater. 21, 1778 (2009).Google Scholar
20. Niu, G., Zhou, M., Yang, X., Park, J., Lu, N., Wang, J., Kim, M.J., Wang, L., and Xia, Y.: Synthesis of Pt-Ni Octahedra in continuous-flow droplet reactors for the scalable production of highly active catalysts toward oxygen reduction. Nano Lett. 16, 3850 (2016).CrossRefGoogle ScholarPubMed
21. de la Presa, P., Multigner, M., de la Venta, J., García, M.A., and Ruiz-González, M.L.: Structural and magnetic characterization of oleic acid and oleylamine-capped gold nanoparticles. J. Appl. Phys. 100, 123915 (2006).Google Scholar
22. Chikan, V., and Mclaurin, E.J.: Rapid nanoparticle synthesis by magnetic and microwave heating. Nanomaterials 6, 85 (2016).Google Scholar
23. Timonen, J.V.I., Seppälä, E.T., Ikkala, O., and Ras, R.H.A.: From hot-injection synthesis to heating-up synthesis of cobalt nanoparticles: observation of kinetically controllable nucleation. Angew. Chemie – Int. Ed. 50, 2080 (2011).Google Scholar
24. Razgoniaeva, N., Acharya, A., Sharma, N., Adhikari, P., Shaughnessy, M., Moroz, P., Khon, D., and Zamkov, M.: Measuring the time-dependent monomer concentration during the hot-injection synthesis of colloidal nanocrystals. Chem. Mater. 27, 6102 (2015).CrossRefGoogle Scholar
25. Ahrenstorf, K., Heller, H., Kornowski, A., Broekaert, J.A.C., and Weller, H.: Nucleation and growth mechanism of NixPt1-x nanoparticles. Adv. Funct. Mater. 18, 3850 (2008).Google Scholar
26. Qi, J., Jiang, L., Jing, M., Tang, Q., and Sun, G.: Preparation of Pt/C via a polyol process – Investigation on carbon support adding sequence. Int. J. Hydrog. Energy 36, 10490 (2011).Google Scholar
27. Long, N.V., Ohtaki, M., Uchida, M., Jalem, R., Hirata, H., Chien, N.D., and Nogami, M.: Synthesis and characterization of polyhedral Pt nanoparticles: their catalytic property, surface attachment, self-aggregation and assembly. J. Colloid Interface Sci. 359, 339 (2011).Google Scholar
28. Xiong, Y. and Xia, Y.: Shape-controlled synthesis of metal nanostructures: the case of palladium. Adv. Mater. 19, 3385 (2007).Google Scholar
29. Xia, X., Wang, Y., Ruditskiy, A., and Xia, Y.: 25th anniversary article: galvanic replacement: a simple and versatile route to hollow nanostructures with tunable and well-controlled properties. Adv. Mater. 25, 6313 (2013).CrossRefGoogle ScholarPubMed
30. Murray, C.B. and Kagan, C.R.: Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu. Rev. Mater. Sci. 30, 545 (2000).Google Scholar
Supplementary material: PDF

Reyes-Rodríguez et al supplementary material

Reyes-Rodríguez et al supplementary material 1

Download Reyes-Rodríguez et al supplementary material(PDF)
PDF 2.8 MB