Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T21:59:40.019Z Has data issue: false hasContentIssue false

Improved performance of three-dimensional Ni–TiO2 core–shell nanowire photoanodes in dye-sensitized solar cells

Published online by Cambridge University Press:  18 October 2013

Gayatri Sahu
Affiliation:
Department of Chemistry and Advanced Materials Research Institute, University of New Orleans, New Orleans, Louisiana 70148
Matthew A. Tarr*
Affiliation:
Department of Chemistry and Advanced Materials Research Institute, University of New Orleans, New Orleans, Louisiana 70148
*
Address all correspondence to Matthew A. Tarr at mtarr@uno.edu
Get access

Abstract

We report a facile way to fabricate three-dimensional (3D) Ni–TiO2 core–shell nanowire arrays through anodic aluminum oxide template-assisted sol–gel TiO2 nanotube shell growth followed by Ni core using room temperature constant current electrodeposition. The 3D Ni–TiO2 nanowire-based dye-sensitized solar cell (DSSC) endows a 67% increase in conversion efficiency as compared with the TiO2 nanotube DSSC and maximum conversion efficiency of 5.07% was obtained by surface treating the photoanode with TiCl4, which provides enhanced light scattering and surface passivation. Indeed, this work paves the way to build reliable 3D Ni–TiO2 nanostructured photoanodes for highly efficient DSSCs.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.O'regan, B. and Grätzel, M.: A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737 (1991).CrossRefGoogle Scholar
2.Kopidakis, N., Benkstein, K.D., van de Lagemaat, J., and Frank, A.J.: Transport-limited recombination of photocarriers in dye-sensitized nanocrystalline TiO2 solar cells. J. Phys. Chem. B 107, 11307 (2003).Google Scholar
3.Zukalova, M., Zukal, A., Kavan, L., Nazeeruddin, M.K., Liska, P., and Grätzel, M.: Nano Lett. 5, 1789 (2005).CrossRefGoogle Scholar
4.Guillen, E., Azaceta, E., Vega-Poot, A., Idigoras, J., Echeberria, J., Anta, J., and Tena-Zaera, R.: ZnO/ZnO core–shell nanowire array electrodes: blocking of recombination and impressive enhancement of photovoltage in dye-sensitized solar cells. J. Phys. Chem. C 117, 13365 (2013).Google Scholar
5.Wu, J.J., Chen, G.R., Lu, C.C., Wu, W.T., and Chen, J.S.: Performance and electron transport properties of TiO(2) nanocomposite dye-sensitized solar cells. Nanotechnology 19, 105702/1 (2008).Google Scholar
6.Law, M., Greene, L.E., Johnson, J.C., Saykally, R., and Yang, P.D.: Nanowire dye-sensitized solar cells. Nature Mater. 4, 455 (2005).Google Scholar
7.Galoppini, E., Rochford, J., Chen, H.H., Saraf, G., Lu, Y.C., Hagfeldt, A., and Boschloo, G.: Fast electron transport in metal organic vapor deposition grown dye-sensitized ZnO nanorod solar cells. J. Phys. Chem. B 110, 16159 (2006).Google Scholar
8.Baxter, J.B. and Aydil, E.S.: Nanowire-based dye-sensitized solar cells. Appl. Phys. Lett. 86, 053114 (2005).Google Scholar
9.Song, M.Y., Ahn, Y.R., Jo, S.M., Kim, D.Y., and Ahn, J.P.: TiO2 single-crystalline nanorod electrode for quasi-solid-state dye-sensitized solar cells. Appl. Phys. Lett. 87, 113113 (2005).Google Scholar
10.Wang, H., Yip, C.T., Cheung, K.Y., Djurisic, A.B., Xie, M.H., Leung, Y.H., and Chan, W.K.: Titania-nanotube-array-based photovoltaic cells. Appl. Phys. Lett. 89, 023508 (2006).Google Scholar
11.Zhu, K., Neale, N.R., Miedaner, A., and Frank, A.J.: Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. Nano Lett. 7, 69 (2007).Google Scholar
12.Stergiopoulos, T., Ghicov, A., Likodimos, V., Tsoukleris, D.S., Kunze, J., Schmuki, P., and Falaras, P.: Dye-sensitized solar cells based on thick highly ordered TiO(2) nanotubes produced by controlled anodic oxidation in non-aqueous electrolytic media. Nanotechnol. 19, 235602 (2008).Google Scholar
13.Kamat, P.V.: Meeting the clean energy demand: nanostructure architectures for solar energy conversion. J. Phys. Chem. C 111, 2834 (2007).Google Scholar
14.Wang, M.L., Huang, C.G., Cao, Y.G., Yu, Q.J., Deng, Z.H., Liu, Y., Huang, Z., Huang, J.Q., Huang, Q.F., Guo, W., and Liang, J.K.: Dye-sensitized solar cells based on nanoparticle-decorated ZnO/TiO2 core/shell nanorod arrays. J. Phys. D-Appl. Phys. 42, 155104 (2009).Google Scholar
15.Xie, Y., Zhou, L., Huang, C., Huang, H., and Lu, J.: Fabrication of nickel oxide-embedded titania nanotube array for redox capacitance application. Electrochim. Acta 53, 3643 (2008).CrossRefGoogle Scholar
16.Banerjee, S., Mohapatra, S.K., Das, P.P., and Misra, M.: Synthesis of coupled semiconductor by filling 1D TiO2 nanotubes with CdS. Chem. Mater. 20, 6784 (2008).CrossRefGoogle Scholar
17.Wang, Q., Zhu, K., Neale, N.R., and Frank, A.J.: Constructing ordered sensitized heterojunctions: bottom-up electrochemical synthesis of p-type semiconductors in oriented n-TiO2 nanotube arrays. Nano Lett. 9, 806 (2009).Google Scholar
18.Mohapatra, S.K., Kondamudi, N., Banerjee, S., and Misra, M.: Functionalization of self-organized TiO2 nanotubes with Pd nanoparticles for photocatalytic decomposition of dyes under solar light illumination. Langmuir 24, 11276 (2008).Google Scholar
19.Chen, S.G., Paulose, M., Ruan, C., Mor, G.K., Varghese, O.K., Kouzoudis, D., and Grimes, C.A.: Electrochemically synthesized CdS nanoparticle-modified TiO2 nanotube-array photoelectrodes: preparation, characterization, and application to photoelectrochemical cells. J. Photochem. Photobiol. A-Chem. 177, 177 (2006).Google Scholar
20.Fang, D., Huang, K.L., Liu, S.Q., and Qin, D.Y.: High density copper nanowire arrays deposition inside ordered titania pores by electrodeposition. Electrochem. Commun. 11, 901 (2009).Google Scholar
21.Martinson, A.B.F., Elam, J.W., Liu, J., Pellin, M.J., Marks, T.J., and Hupp, J.T.: Radial electron collection in dye-sensitized solar cells. Nano Lett. 8, 2862 (2008).Google Scholar
22.Jiang, D., Jian, Q., Wang, D., and Tang, Z.: Facile synthesis of Au@TiO2 core-shell hollow spheres for dye-sensitized solar cells with remarkably improved efficiency. Energy Environ. Sci. 5, 6914 (2012).Google Scholar
23.Guo, K., Li, M., Fang, X., Liu, X., Zhu, Y., Hu, Z., and Zhao, X.: Enhancement of properties of dye-sensitized solar cells by surface plasmon resonance of Ag nanowire core–shell structure in TiO2 films. J. Mater. Chem. A 1, 7229 (2013).Google Scholar
24.Feng, Y., Ji, X., Duan, J., Zhu, J., Jiang, J., Ding, H., Meng, G., Ding, R., Liu, J., Hu, A., and Huang, X.: Synthesis of ZnO@TiO2 core–shell long nanowire arrays and their application on dye-sensitized solar cells. J. Solid State Chem. 190, 303 (2012).Google Scholar
25.Sahu, G., Gordon, S.W., and Tarr, M.A.: Synthesis and application of core–shell Au-TiO2 nanowire photoanode materials for dye sensitized solar cells. RSC Adv. 2, 573 (2012).Google Scholar
26.Sahu, G., Wang, K., Gordon, S.W., Zhou, W., and Tarr, M.A.: Core-shell Au-TiO2 nanoarchitectures formed by pulsed laser deposition for enhanced efficiency in dye sensitized solar cells. RSC Adv. 2, 3791 (2012).Google Scholar
27.Lee, B., Hwang, D.K., Guo, P.J., Ho, S.T., Buchholtz, D.B., Wang, C.Y., and Chang, R.P.H.: Materials, interfaces, and photon confinement in dye-sensitized solar cells. J. Phys. Chem. B 114, 14582 (2010).CrossRefGoogle ScholarPubMed
28.Park, K., Zhang, Q., Garcia, B.B., Zhou, X., Jeong, Y.-H., and Cao, A.G.: Effect of an ultrathin TiO2 layer coated on submicrometer-sized ZnO nanocrystallite aggregates by atomic layer deposition on the performance of dye-sensitized solar cells. Adv. Mater. 22, 2329 (2010).Google Scholar
29.Hagfeldt, A. and Grätzel, A.M.: Molecular photovoltaics. Acc. Chem. Res. 33, 269 (2000).Google Scholar
Supplementary material: Image

Sahu Supplementary Material

Image

Download Sahu Supplementary Material(Image)
Image 2.7 MB
Supplementary material: Image

Sahu Supplementary Material

Image

Download Sahu Supplementary Material(Image)
Image 2.4 MB
Supplementary material: File

Sahu Supplementary Material

Supplementary Material

Download Sahu Supplementary Material(File)
File 2.8 MB