Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-13T09:00:24.221Z Has data issue: false hasContentIssue false

Identifying defect-tolerant semiconductors with high minority-carrier lifetimes: beyond hybrid lead halide perovskites

Published online by Cambridge University Press:  20 May 2015

Riley E. Brandt*
Affiliation:
Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
Vladan Stevanović
Affiliation:
National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401; Colorado School of Mines, 1500 Illinois Street, Golden, Colorado 80401, USA
David S. Ginley
Affiliation:
National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, USA
Tonio Buonassisi*
Affiliation:
Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
*
Address all correspondence to Riley E. Brandt, Tonio Buonassisi at rbrandt@alum.mit.edu; buonassisi@mit.edu
Address all correspondence to Riley E. Brandt, Tonio Buonassisi at rbrandt@alum.mit.edu; buonassisi@mit.edu
Get access

Abstract

The emergence of methyl-ammonium lead halide (MAPbX3) perovskites motivates the identification of unique properties giving rise to exceptional bulk transport properties, and identifying future materials with similar properties. Here, we propose that this “defect tolerance” emerges from fundamental electronic-structure properties, including the orbital character of the conduction and valence band extrema, the charge-carrier effective masses, and the static dielectric constant. We use MaterialsProject.org searches and detailed electronic-structure calculations to demonstrate these properties in other materials than MAPbX3. This framework of materials discovery may be applied more broadly, to accelerate discovery of new semiconductors based on emerging understanding of recent successes.

Type
Prospective Article
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Shockley, W. and Queisser, H.J.: Detailed balance limit of efficiency of p–n junction solar cells. J. Appl. Phys. 32, 510519 (1961). doi:10.1063/1.1736034.CrossRefGoogle Scholar
2.Prince, M.B.: Silicon solar energy converters. J. Appl. Phys. 26, 534540 (1955). doi:10.1063/1.1722034.CrossRefGoogle Scholar
3.Yu, L. and Zunger, A.: Identification of potential photovoltaic absorbers based on first-principles spectroscopic screening of materials. Phys. Rev. Lett. 108, 068701 (2012). doi:10.1103/PhysRevLett.108.068701.CrossRefGoogle ScholarPubMed
4.Yu, L., Kokenyesi, R.S., Keszler, D.A., and Zunger, A.: Inverse design of high absorption thin-film photovoltaic materials. Adv. Energy Mater. 3, 4348 (2013). doi:10.1002/aenm.201200538.CrossRefGoogle Scholar
5.Wadia, C., Alivisatos, A.P., and Kammen, D.M.: Materials availability expands the opportunity for large-scale photovoltaics deployment. Environ. Sci. Technol. 43, 20722077 (2009). doi:10.1021/es8019534.CrossRefGoogle ScholarPubMed
6.Powell, D.M., Winkler, M.T., Choi, H.J., Simmons, C.B., Needleman, D.B., and Buonassisi, T.: Crystalline silicon photovoltaics: a cost analysis framework for determining technology pathways to reach baseload electricity costs. Energy Environ. Sci. 5, 58745883 (2012). doi:10.1039/C2EE03489A.CrossRefGoogle Scholar
7.Surek, T.: Crystal growth and materials research in photovoltaics: progress and challenges. J. Cryst. Growth 275, 292304 (2005). doi:10.1016/j.jcrysgro.2004.10.093.CrossRefGoogle Scholar
8.Repins, I.L., Moutinho, H., Choi, S.G., Kanevce, A., Kuciauskas, D., Dippo, P., Beall, C.L., Carapella, J., DeHart, C., Huang, B., and Wei, S.H.: Indications of short minority-carrier lifetime in kesterite solar cells. J. Appl. Phys. 114, 084507 (2013). doi:10.1063/1.4819849.CrossRefGoogle Scholar
9.Mangan, N.M., Brandt, R.E., Steinmann, V., Jaramillo, R., Li, J.V., Poindexter, J.R., Hartman, K., Sun, L., Gordon, R.G., and Buonassisi, T.: A path to 10% efficiency for tin sulfide devices. In 2014 IEEE 40th Photovoltaic Specialists Conf. PVSC, 2014; 2373–2378. doi:10.1109/PVSC.2014.6925404.CrossRefGoogle Scholar
10.Unold, T. and Schock, H.W.: Nonconventional (non-silicon-based) photovoltaic materials. Annu. Rev. Mater. Res. 41, 297321 (2011). doi:10.1146/annurev-matsci-062910-100437.CrossRefGoogle Scholar
11.Stranks, S.D., Eperon, G.E., Grancini, G., Menelaou, C., Alcocer, M.J.P., Leijtens, T., Herz, L.M., Petrozza, A., and Snaith, H.J.: Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341344 (2013). doi:10.1126/science.1243982.CrossRefGoogle Scholar
12.Dong, Q., Fang, Y., Shao, Y., Mulligan, P., Qiu, J., Cao, L., and Huang, J.: Electron–hole diffusion lengths >175 μm in solution grown CH3NH3PbI3 single crystals. Science 347, 967970 (2015). doi:10.1126/science.aaa5760.Google Scholar
13.Jeon, N.J., Noh, J.H., Yang, W.S., Kim, Y.C., Ryu, S., Seo, J., and Seok, S.I.: Compositional engineering of perovskite materials for high-performance solar cells. Nature 517, 476480 (2015). doi:10.1038/nature14133.CrossRefGoogle ScholarPubMed
14.National Renewable Energy Laboratory. Best research-cell efficiencies. Best Research Cell Efficiency (accessed March 20, 2015). http://www.nrel.gov/ncpv/images/efficiency_chart.jpgGoogle Scholar
15.Kojima, A., Teshima, K., Shirai, Y., and Miyasaka, T.: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 60506051 (2009). doi:10.1021/ja809598r.Google Scholar
16.Green, M.A., Ho-Baillie, A., and Snaith, H.J.: The emergence of perovskite solar cells. Nat. Photonics 8, 506514 (2014). doi:10.1038/nphoton.2014.134.CrossRefGoogle Scholar
17.Stoumpos, C.C., Malliakas, C.D., and Kanatzidis, M.G.: Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52, 90199038 (2013). doi:10.1021/ic401215x.CrossRefGoogle ScholarPubMed
18.Mattheis, J., Werner, J., and Rau, U.: Finite mobility effects on the radiative efficiency limit of pn-junction solar cells. Phys. Rev. B 77, 085203 (2008). doi:10.1103/PhysRevB.77.085203.CrossRefGoogle Scholar
19.Davis, J.R., Rohatgi, A., Hopkins, R.H., Blais, P.D., Rai-Choudhury, P., McCormick, J.R., and Mollenkopf, H.C.: Impurities in silicon solar cells. IEEE Trans. Electron Devices 27, 677687 (1980). doi:10.1109/T-ED.1980.19922.Google Scholar
20.Moutinho, H.R., Dhere, R.G., Al-Jassim, M.M., Ballif, C., Levi, D.H., Swartzlander, A.B., Young, M.R., and Kazmerski, L.L.: Study of CdTe/CdS solar cells using CSS CdTe deposited at low temperature. In 2000 IEEE 28th Photovoltaic Specialists Conf. PVSC, 2000; 646–649.Google Scholar
21.Kranz, L., Gretener, C., Perrenoud, J., Jaeger, D., Gerstl, S.S.A., Schmitt, R., Buecheler, S., and Tiwari, A.N.: Tailoring impurity distribution in polycrystalline CdTe solar cells for enhanced minority carrier lifetime. Adv. Energy Mater. 4, 1301400 (2014). doi:10.1002/aenm.201301400.CrossRefGoogle Scholar
22.Repins, I.L., Metzger, W.K., Perkins, C.L., Li, J.V., and Contreras, M.A.: Measured minority-carrier lifetime and CIGS device performance. In 2009 IEEE 34th Photovoltaic Specilists Conf. PVSC, 2009; 000978–000983. doi:10.1109/PVSC.2009.5411126.CrossRefGoogle Scholar
23.Miller, O.D., Yablonovitch, E., and Kurtz, S.R.: Strong internal and external luminescence as solar cells approach the Shockley-Queisser limit. IEEE J. Photovolt. 2, 303311 (2012). doi:10.1109/JPHOTOV.2012.2198434.CrossRefGoogle Scholar
24.Schiff, E.A.: Hole mobilities and the physics of amorphous silicon solar cells. J. Non-Cryst. Solids 352, 10871092 (2006). doi:10.1016/j.jnoncrysol.2005.11.074.CrossRefGoogle Scholar
25.Metzger, W.K., Albin, D., Levi, D., Sheldon, P., Li, X., Keyes, B.M., and Ahrenkiel, R.K.: Time-resolved photoluminescence studies of CdTe solar cells. J. Appl. Phys. 94, 35493555 (2003). doi:10.1063/1.1597974.CrossRefGoogle Scholar
26.Walter, D., Rosenits, F., Kopp, F., Reber, S., Berger, B., and Warta, W.: Determining the minority carrier lifetime in epitaxial silicon layers by micro-wave-detected photoconductivity measurements. In 25th Eur. Photovoltaic Solar Energy Conf., Valencia, Spain, 2010; 2078–2083. doi:10.4229/25thEUPVSEC2010-2CV.3.1.CrossRefGoogle Scholar
27.Tiedje, T., Wronski, C.R., Abeles, B., and Cebulka, J.M.: Electron transport in hydrogenated amorphous silicon: drift mobility and junction capacitance. Sol. Cells 2, 301318 (1980). doi:10.1016/0379-6787(80)90034-4.CrossRefGoogle Scholar
28.Sinton, R.A., Cuevas, A., and Stuckings, M.: Quasi-steady-state photoconductance, a new method for solar cell material and device characterization. In IEEE 25th Photovoltaic Specialists Conf., Washington, D.C., 1996; 457–460.Google Scholar
29.Katahara, J.K. and Hillhouse, H.W.: Quasi-Fermi level splitting and sub-bandgap absorptivity from semiconductor photoluminescence. J. Appl. Phys. 116, 173504 (2014). doi:10.1063/1.4898346.CrossRefGoogle Scholar
30.Jain, A., Ong, S.P., Hautier, G., Chen, W., Richards, W.D., Dacek, S., Cholia, S., Gunter, D., Skinner, D., Ceder, G., and Persson, K.A.: Commentary: the Materials Project: a materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013). doi:10.1063/1.4812323.CrossRefGoogle Scholar
31.Yin, W.-J., Shi, T., and Yan, Y.: Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl. Phys. Lett. 104, 063903 (2014). doi:10.1063/1.4864778.Google Scholar
32.Yin, W.-J., Shi, T., and Yan, Y.: Unique properties of halide perovskites as possible origins of the superior solar cell performance. Adv. Mater. 26, 46534658 (2014). doi:10.1002/adma.201306281.CrossRefGoogle ScholarPubMed
33.Yamada, Y., Nakamura, T., Endo, M., Wakamiya, A., and Kanemitsu, Y.: Near-band-edge optical responses of solution-processed organic-inorganic hybrid perovskite CH3NH3PbI3 on mesoporous TiO2 electrodes. Appl. Phys. Express 7, 032302 (2014). doi:10.7567/APEX.7.032302.CrossRefGoogle Scholar
34.Walsh, A.: Principles of chemical bonding and band gap engineering in hybrid organic–inorganic halide perovskites. J. Phys. Chem. C 119, 57555760 (2015). doi:10.1021/jp512420b.CrossRefGoogle ScholarPubMed
35.Du, M.H.: Efficient carrier transport in halide perovskites: theoretical perspectives. J. Mater. Chem. A 2, 90919098 (2014). doi:10.1039/C4TA01198H.CrossRefGoogle Scholar
36.Zhang, S.B., Wei, S.-H., Zunger, A., and Katayama-Yoshida, H.: Defect physics of the CuInSe2 chalcopyrite semiconductor. Phys. Rev. B 57, 9642 (1998).CrossRefGoogle Scholar
37.Zakutayev, A., Caskey, C.M., Fioretti, A.N., Ginley, D.S., Vidal, J., Stevanović, V., Tea, E., and Lany, S.: Defect tolerant semiconductors for solar energy conversion. J. Phys. Chem. Lett. 5, 11171125 (2014). doi:10.1021/jz5001787.Google Scholar
38.Shi, D., Adinolfi, V., Comin, R., Yuan, M., Alarousu, E., Buin, A., Chen, Y., Hoogland, S., Rothenberger, A., Katsiev, K., Losovyj, Y., Zhang, X., Dowben, P.A., Mohammed, O.F., Sargent, E.H., and Bakr, O.M.: Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347, 519522 (2015). doi:10.1126/science.aaa2725.CrossRefGoogle ScholarPubMed
39.Tvingstedt, K., Malinkiewicz, O., Baumann, A., Deibel, C., Snaith, H.J., Dyakonov, V., and Bolink, H.J.: Radiative efficiency of lead iodide based perovskite solar cells. Sci. Rep. 4, 6071 (2014). doi:10.1038/srep06071.Google Scholar
40.Miller, E.M., Zhao, Y., Mercado, C.C., Saha, S.K., Luther, J.M., Zhu, K., Stevanovic, V., Perkins, C.L., and van de Lagemaat, J.: High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv. Mater. 26, 15841589 (2014). doi:10.1002/adma.201305172.Google Scholar
41.Umebayashi, T., Asai, K., Kondo, T., and Nakao, A.: Electronic structures of lead iodide based low-dimensional crystals. Phys. Rev. B 67, 155405 (2003). doi:10.1103/PhysRevB.67.155405.CrossRefGoogle Scholar
42.Miller, E.M., Zhao, Y., Mercado, C.C., Saha, S.K., Luther, J.M., Zhu, K., Stevanović, V., Perkins, C.L. and van de Lagemaat, J.: Substrate-controlled band positions in CH3NH3PbI3 perovskite films. Phys. Chem. Chem. Phys. 16, 2212222130 (2014). doi:10.1039/C4CP03533J.CrossRefGoogle ScholarPubMed
43.Umari, P., Mosconi, E., and De Angelis, F.: Relativistic solar cells. Sci. Rep. 4, 4467 (2014).CrossRefGoogle Scholar
44.Sze, S.M. and Kwok, K.N.: Physics of Semiconductor Devices, 3rd ed.; John Wiley & Sons: Hoboken, NJ, 2007.Google Scholar
45.Frost, J.M., Butler, K.T., Brivio, F., Hendon, C.H., van Schilfgaarde, M., and Walsh, A.: Atomistic origins of high-performance in hybrid halide perovskite solar cells. Nano Lett. 14, 25842590 (2014).Google Scholar
46.Bube, R.H.: Photoelectronic Properties of Semiconductors (Cambridge University Press: Cambridge, UK, 1992).Google Scholar
47.Lin, Q., Armin, A., Nagiri, R.C.R., Burn, P.L., and Meredith, P.: Electro-optics of perovskite solar cells. Nat. Photonics 9, 106112 (2015). doi:10.1038/nphoton.2014.284.CrossRefGoogle Scholar
48.Juarez-Perez, E.J., Sanchez, R.S., Badia, L., Garcia-Belmonte, G., Kang, Y.S., Mora-Sero, I., and Bisquert, J.: Photoinduced giant dielectric constant in lead halide perovskite solar cells. J. Phys. Chem. Lett. 5, 23902394 (2014). doi:10.1021/jz5011169.Google Scholar
49.Brivio, F., Walker, A.B., and Walsh, A.: Structural and electronic properties of hybrid perovskites for high-efficiency thin-film photovoltaics from first-principles. APL Mater. 1, 042111 (2013). doi:10.1063/1.4824147.Google Scholar
50.Kim, J., Lee, S.-H., Lee, J.H., and Hong, K.-H.: The role of intrinsic defects in methylammonium lead iodide perovskite. J. Phys. Chem. Lett. 5, 13121317 (2014). doi:10.1021/jz500370k.CrossRefGoogle ScholarPubMed
51.Lester, S.D., Ponce, F.A., Craford, M.G., and Steigerwald, D.A.: High dislocation densities in high efficiency GaN-based light-emitting diodes. Appl. Phys. Lett. 66, 1249 (1995). doi:10.1063/1.113252.CrossRefGoogle Scholar
52.Carmody, M., Mallick, S., Margetis, J., Kodama, R., Biegala, T., Xu, D., Bechmann, P., Garland, J.W., and Sivananthan, S.: Single-crystal II–VI on Si single-junction and tandem solar cells. Appl. Phys. Lett. 96, 153502 (2010). doi:10.1063/1.3386529.CrossRefGoogle Scholar
53.Lee, Y.S., Winkler, M.T., Siah, S.C., Brandt, R., and Buonassisi, T.: Hall mobility of cuprous oxide thin films deposited by reactive direct-current magnetron sputtering. Appl. Phys. Lett. 98, 192115 (2011). doi:10.1063/1.3589810.CrossRefGoogle Scholar
54.Seto, J.Y.W.: The electrical properties of polycrystalline silicon films. J. Appl. Phys. 46, 5247 (1975). doi:10.1063/1.321593.CrossRefGoogle Scholar
55.Yan, J., Gorai, P., Ortiz, B., Miller, S., Barnett, S.A., Mason, T., Stevanović, V., and Toberer, E.S.: Material descriptors for predicting thermoelectric performance. Energy Env. Sci. 8, 983994 (2014). doi:10.1039/C4EE03157A.CrossRefGoogle Scholar
56.Feng, J.: Mechanical properties of hybrid organic–inorganic CH3NH3BX3 (B = Sn, Pb; X = Br, I) perovskites for solar cell absorbers. APL Mater. 2, 081801 (2014). doi:10.1063/1.4885256.Google Scholar
57.Krich, J.J., Halperin, B.I., and Aspuru-Guzik, A.: Nonradiative lifetimes in intermediate band photovoltaics—absence of lifetime recovery. J. Appl. Phys. 112, 013707 (2012). doi:10.1063/1.4732085.CrossRefGoogle Scholar
58.De Wolf, S., Holovsky, J., Moon, S.-J., Löper, P., Niesen, B., Ledinsky, M., Haug, F.-J., Yum, J.-H., and Ballif, C.: Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance. J. Phys. Chem. Lett. 5, 10351039 (2014). doi:10.1021/jz500279b.Google Scholar
59.Sellin, P.J.: Thick film compound semiconductors for X-ray imaging applications. Nucl. Instrum. Methods Phys. Res. A 563, 18 (2006). doi:10.1016/j.nima.2006.01.110.CrossRefGoogle Scholar
60.Hautier, G., Miglio, A., Ceder, G., Rignanese, G.-M., and Gonze, X.: Identification and design principles of low hole effective mass p-type transparent conducting oxides. Nat. Commun. 4, 2292 (2013). doi:doi:10.1038/ncomms3292.CrossRefGoogle ScholarPubMed
61.Nechache, R., Harnagea, C., Licoccia, S., Traversa, E., Ruediger, A., Pignolet, A., and Rosei, F.: Photovoltaic properties of Bi2FeCrO6 epitaxial thin films. Appl. Phys. Lett. 98, 202902 (2011). doi:10.1063/1.3590270.Google Scholar
62.Rödel, J., Jo, W., Seifert, K.T.P., Anton, E.-M., Granzow, T., and Damjanovic, D.: Perspective on the development of lead-free piezoceramics. J. Am. Ceram. Soc. 92, 11531177 (2009). doi:10.1111/j.1551-2916.2009.03061.x.CrossRefGoogle Scholar
63.Mudring, A.-V.: Thallium halides – new aspects of the stereochemical activity of electron lone pairs of heavier main-group elements. Eur. J. Inorg. Chem. 2007, 882890 (2007). doi:10.1002/ejic.200600975.Google Scholar
64.Du, M.-H. and Singh, D.J.: Enhanced born charge and proximity to ferroelectricity in thallium halides. Phys. Rev. B 81, 144114 (2010).CrossRefGoogle Scholar
65.Du, M.-H. and Singh, D.J.: Enhanced born charges in III-VII, IV-VII2, and V-VII3 compounds. Phys. Rev. B 82, 045203 (2010). doi:10.1103/PhysRevB.82.045203.CrossRefGoogle Scholar
66.Ong, S.P., Richards, W.D., Jain, A., Hautier, G., Kocher, M., Cholia, S., Gunter, D., Chevrier, V.L., Persson, K.A., and Ceder, G.: Python materials Genomics (pymatgen): a robust, open-source python library for materials analysis. Comput. Mater. Sci. 68, 314319 (2013). doi:10.1016/j.commatsci.2012.10.028.Google Scholar
67.Walsh, A., Payne, D.J., Egdell, R.G., and Watson, G.W.: Stereochemistry of post-transition metal oxides: revision of the classical lone pair model. Chem. Soc. Rev. 40, 4455 (2011). doi:10.1039/c1cs15098g.Google Scholar
68.Stevanović, V., Hartman, K., Jaramillo, R., Ramanathan, S., Buonassisi, T., and Graf, P.: Variations of ionization potential and electron affinity as a function of surface orientation: the case of orthorhombic SnS. Appl. Phys. Lett. 104, 211603 (2014). doi:10.1063/1.4879558.CrossRefGoogle Scholar
69.Chung, I., Song, J.-H., Im, J., Androulakis, J., Malliakas, C.D., Li, H., Freeman, A.J., Kenney, J.T., and Kanatzidis, M.G.: CsSnI3: semiconductor or metal? High electrical conductivity and strong near-infrared photoluminescence from a single material. High hole mobility and phase-transitions. J. Am. Chem. Soc. 134, 85798587 (2012). doi:10.1021/ja301539s.CrossRefGoogle ScholarPubMed
70.Nechache, R., Harnagea, C., Li, S., Cardenas, L., Huang, W., Chakrabartty, J., and Rosei, F.: Bandgap tuning of multiferroic oxide solar cells. Nat. Photonics 9, 6167 (2015). doi:10.1038/nphoton.2014.255.Google Scholar
71.Lintereur, A.T., Qiu, W., Nino, J.C., and Baciak, J.: Characterization of bismuth tri-iodide single crystals for wide band-gap semiconductor radiation detectors. Nucl. Instrum. Methods Phys. Res. A 652, 166169 (2011). doi:10.1016/j.nima.2010.12.013.Google Scholar
72.Vidal, J., Lany, S., Francis, J., Kokenyesi, R., and Tate, J.: Structural and electronic modification of photovoltaic SnS by alloying. J. Appl. Phys. 115, 113507 (2014). doi:10.1063/1.4868974.CrossRefGoogle Scholar
73.Secco, E.A. and Sharma, A.: Structure stabilization: locking-in fast cation conductivity phase in TlI. J. Phys. Chem. Solids 56, 251254 (1995). doi:10.1016/0022-3697(94)00172-3.CrossRefGoogle Scholar
74.Nitsche, R. and Merz, W.J.: Photoconduction in ternary V-VI-VII compounds. J. Phys. Chem. Solids 13, 154155 (1960).Google Scholar
75.Hahn, N.T., Rettie, A.J.E., Beal, S.K., Fullon, R.R., and Mullins, C.B.: n-BiSI thin films: selenium doping and solar cell behavior. J. Phys. Chem. C 116, 2487824886 (2012). doi:10.1021/jp3088397.Google Scholar
76.Hahn, N.T., Self, J.L., and Mullins, C.B.: BiSI micro-rod thin films: efficient solar absorber electrodes? J. Phys. Chem. Lett. 3, 15711576 (2012). doi:10.1021/jz300515p.Google Scholar
77.Zhang, X., Zhang, L., Xie, T., and Wang, D.: Low-temperature synthesis and high visible-light-induced photocatalytic activity of BiOI/TiO2 heterostructures. J. Phys. Chem. C 113, 73717378 (2009). doi:10.1021/jp900812d.Google Scholar
78.Zhao, K., Zhang, X., and Zhang, L.: The first BiOI-based solar cells. Electrochem. Commun. 11, 612615 (2009). doi:10.1016/j.elecom.2008.12.041.Google Scholar
79.Butler, K.T., Frost, J.M., and Walsh, A.: Ferroelectric materials for solar energy conversion: photoferroics revisited. Energy Environ. Sci. 8, 838848 (2015). doi:10.1039/C4EE03523B.CrossRefGoogle Scholar
80.Gabrel'yan, B.V., Lavrentiev, A.A., Nikiforov, I.Y., and Sobolev, V.V.: Electronic energy structure of MBiS2 (M = Li, Na, K) calculated with allowance for the difference between the M-S and Bi-S bond lengths. J. Struct. Chem. 49, 788794 (2008). doi:10.1007/s10947-008-0140-2.Google Scholar
81.Kang, S., Hong, Y., Jeon, Y., and Facile, A.: Synthesis and characterization of sodium bismuth sulfide (NaBiS2) under hydrothermal condition. Bull. Korean Chem. Soc. 35, 18871890 (2014). doi:10.5012/bkcs.2014.35.6.1887.Google Scholar
82.McCarthy, T.J., Ngeyi, S.P., Liao, J.H., DeGroot, D.C., Hogan, T., Kannewurf, C.R., and Kanatzidis, M.G.: Molten salt synthesis and properties of three new solid-state ternary bismuth chalcogenides, beta.-CsBiS2, gamma.-CsBiS2, and K2Bi8Se13. Chem. Mater. 5, 331340 (1993). doi:10.1021/cm00027a016.CrossRefGoogle Scholar
83.Timofte, T. and Mudring, A.-V.: Indium(I) Tetraiodoaluminate. Z. Anorg. Allg. Chem. 634, 622623 (2008). doi:10.1002/zaac.200700525.Google Scholar
84.Mel'nikova, S.V. and Zaitsev, A.I.: Ferroelectric phase transition in Cs3Bi2I9. Phys. Solid State 39, 16521654 (1997).CrossRefGoogle Scholar
85.Peresh, E.Y., Sidei, V.I., Gaborets, N.I., Zubaka, O.V., Stercho, I.P., and Barchii, I.E.: Influence of the average atomic number of the A2TeC6 and A3B2C9 (A = K, Rb, Cs, Tl(I); B = Sb, Bi; C = Br, I) compounds on their melting point and band gap. Inorg. Mater. 50, 101106 (2014). doi:10.1134/S0020168514010166.CrossRefGoogle Scholar
86.Jakubas, R. and Sobczyk, L.: Phase transitions in alkylammonium halogenoantimonates and bismuthates. Phase Transit. 20, 163193 (1990). doi:10.1080/01411599008206873.Google Scholar
87.Wu, L.-M., Wu, X.-T., and Chen, L.: Structural overview and structure–property relationships of iodoplumbate and iodobismuthate. Coord. Chem. Rev. 253, 27872804 (2009). doi:10.1016/j.ccr.2009.08.003.Google Scholar
88.Plackowski, T., Wlosewicz, D., Tomaszewski, P.E., Baran, J., and Marchewka, M.K.: Specific heat of (NH2(CH3)2)3Bi2I9. Acta Phys. Pol. A 87, 635641 (1995).Google Scholar
89.Kieslich, G., Sun, S., and Cheetham, A.K.: Solid-state principles applied to organic–inorganic perovskites: new tricks for an old dog. Chem. Sci. 5, 47124715 (2014). doi:10.1039/C4SC02211D.CrossRefGoogle Scholar
90.Filip, M.R., Eperon, G.E., Snaith, H.J., and Giustino, F.: Steric engineering of metal-halide perovskites with tunable optical band gaps. Nat. Commun. 5, 5757 (2014). doi:10.1038/ncomms6757.Google Scholar
91.Kresse, G. and Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 1116911186 (1996). doi:10.1103/PhysRevB.54.11169.CrossRefGoogle ScholarPubMed
92.Perdew, J.P., Burke, K., and Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 38653868 (1996). doi:10.1103/PhysRevLett.77.3865.Google Scholar
93.Blöchl, P.E.: Projector augmented-wave method. Phys. Rev. B 50, 1795317979 (1994). doi:10.1103/PhysRevB.50.17953.Google Scholar
94.Stevanović, V., Lany, S., Zhang, X., and Zunger, A.: Correcting density functional theory for accurate predictions of compound enthalpies of formation: fitted elemental-phase reference energies. Phys. Rev. B 85, 115104 (2012). doi:10.1103/PhysRevB.85.115104.Google Scholar
95.Wu, X., Vanderbilt, D., and Hamann, D.R.: Systematic treatment of displacements, strains, and electric fields in density-functional perturbation theory. Phys. Rev. B 72, 035105 (2005). doi:10.1103/PhysRevB.72.035105.Google Scholar